Factors affecting heated transcutaneous PO2 and unheated transcutaneous PO2 in preterm infants

Crit Care Med. 1981 Apr;9(4):298-304. doi: 10.1097/00003246-198104000-00002.

Abstract

The authors evaluated transcutaneous PCO2 (PtcCO2) and PO2 (PtcO2) electrodes in 25 infants. Their diagnosis were severe hyaline membrane disease (HMD) (18), aspiration syndrome (3), severe hydrops, (3) persistent fetal circulation (6), and the others, congenital pneumonia, congenital plural effusion, pulmonary hemorrhage. In most all, the cardiovascular system was compromised, i.e., PDA with congestive heart failure and shock. PtcO2 electrode was heated to 43.5 degrees C while PtcCO2 electrode was not heated. Simultaneous arterial blood pressure (ABP), pH, arterial blood gases were obtained with the transcutaneous gas measurements. The data were analyzed first dividing all the paired arterial and transcutaneous gas tensions into those with and without cardiovascular drugs (dopamine, isoproterenol), and second, the paired values were divided into those taken (a) during severe acidosis (pH less than 7.25), (b) hypotension (less than 2 SD) of normal, and (c) hypotension and acidosis. These data show: (1) the unheated PtcCO2 and heated PtcO2 accurately correlated with the simultaneous arterial measurements: (2) PtcCO2 reflects tissue PCO2; (3) drugs affect both the PtcCO2 and PtcO2; (4) elevated PtcCO2 dissociating from the simultaneous PaCO2 in neonates with cardiovascular compromise results from decreased tissue perfusion. These data suggest that transcutaneous gas sensors perform dual functions; first, as gas monitors in patients without cardiovascular alterations, and second, in patients with cardiovascular compromise, PtcCO2 reflected tissue perfusion and PtcCO2 monitored oxygen delivery to the tissues.

MeSH terms

  • Blood Gas Analysis / instrumentation*
  • Carbon Dioxide / blood
  • Cardiovascular Diseases / blood
  • Humans
  • Infant, Newborn
  • Infant, Premature, Diseases / blood*
  • Monitoring, Physiologic / methods
  • Oxygen / blood*
  • Oxygen Consumption
  • Partial Pressure

Substances

  • Carbon Dioxide
  • Oxygen