Skip to main content
Log in

Antibacterial-Induced Nephrotoxicity in the Newborn

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Antibacterials are the primary cause of drug-induced kidney disease in all age groups and these agents bring about renal damage by 2 main mechanisms, namely, direct and immunologically mediated.

For some antibacterials (aminoglycosides and vancomycin) nephrotoxicity is very frequent but generally reversible upon discontinuation of the drug. However, the development of acute renal failure with these agents is possible and its incidence in the newborn seems to be increasing.

Antibacterials are very often used in the neonatal period especially in very low birthweight neonates. The role of neonatal age in developing nephrotoxicity has still to be defined.

Since the traditional laboratory parameters of nephrotoxicity are abnormal only in the presence of substantial renal damage, the identification of early non-invasive markers of the renal damage (urinary microglobulins, enzymes and growth factors) is of importance.

Aminoglycosides and glycopeptides are still frequently used, either alone or in combination, despite their low therapeutic index. Numerous factors intervene in bringing about the kidney damage induced by these 2 classes of antibacterials, such as factors related to the antibacterial itself and others related to the associated pathology as well as pharmacological factors. Nephrotoxicity can be caused by the β-lactams and related compounds. Their potential to cause nephrotoxicity decreases in the order: carbapenems > cephalosporins > penicillins > monobactams. Third generation cephalosporins are frequently used in neonates. However, they are well tolerated compounds at the renal level.

The nephrotoxicity of other classes of antibacterials is not discussed either because they are only used in neonates in exceptional circumstances, for example, chloramphenicol and cotrimoxazole (trimethoprim-sulfamethoxazole) or are not associated with significant nephrotoxicity, for example macrolides, clindamicin, quinolones, rifampicin (rifampin) and metronidazole.

Antibacterial-induced nephrotoxicity is an important parameter to be considered when treating the newborn and this is particularly true when use of a combination of different antibacterials and/or drugs with a nephrotoxic potential is being considered. However, other parameters, such as antibacterial spectrum, pharmacokinetics, post-antibacterial effect, clinical efficacy, general adverse effect profile and cost, must also be considered in the choice of antibacterial therapy in the neonate.

Knowledge of the renal safety of antibacterials and the correct approach to therapeutic drug monitoring may be useful elements for preventing iatrogenic renal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Joannides R, Dhib M, Fillastre JP. Drug-induced nephropathies [in French]. Rev Prat 1992; (17): 2210–6

    Google Scholar 

  2. Principi N, Contardi E. Drug-induced nephrotoxicity [in Italian]. Prosp Pediatr 1982; 47: 271–81

    Google Scholar 

  3. Morin JP, Olier B. Antibiotic nephrotoxicity. Chemioterapia 1984; 3: 43–51

    Google Scholar 

  4. Khoory BJ, Fanos V, Dall’Agnola A, et al. Aminoglycosides, risk factors and neonatal kidney [in Italian]. Med Surg Ped 1996; 18: 495–9

    CAS  Google Scholar 

  5. Fanos V, Padovani EM. Aminoglycoside nephrotoxicity and urinary excretion of N-acetyl-β-D-glucosaminidase in the neonate. Med Univers 1990; 3(2): 9–22

    Google Scholar 

  6. Pospishil YO, Antonovich MA. Antibiotic associated nephropathy. Pol J Pathol 1996; 47(1): 13–7

    PubMed  CAS  Google Scholar 

  7. Fanos V, Benini D, Vinco S, et al. Glycopeptides and the neonatal kidney [in Italian]. Med Surg Ped 1997; 19: 259–62

    CAS  Google Scholar 

  8. Fanos V, Cataldi L. Aminoglycoside-induced nephrotoxicity in the newborn. In: Cataldi L, Fanos V, Simeoni U, editors. Neonatal nephrology in progress. Lecce: Agorà, 1996; 152–81

    Google Scholar 

  9. Bennet WM, Elringa LW, Porter GA. Tubulo interstitial disease and toxic nephropathy. In: Brenner BM, Rector FC, editors. The kidney. 4th ed. Philadelphia: W.B. Saunders, 1991

    Google Scholar 

  10. Montini G, Barbieri P, Zaramella P, et al. Epidemiology of acute renal failure in the neonatal period [in Italian]. Ital J Pediatr 1995; 21(65): 2–5

    Google Scholar 

  11. Simeoni U, Matis J, Messer J. Clinical implications of renal immaturity in tiny, premature infants. In: Catadi VL, Fanos V, Simeoni U, editors. Neonatal nephrology in progress. Lecce: Agorà, 1996: 129–40

    Google Scholar 

  12. Verlato G, Fanos V, Tatò L, et al. Mortality from renal diseases in the italian population aged less than 20 years in the period 1979-1991 [in Italian]. Med Surg Ped 1997; 19(5): 365–8

    CAS  Google Scholar 

  13. Gortner L, Berusan U, Brand M, et al. Drug utilisation in very premature infants in neonatal intensive care units. Dev Pharmacol Ther 1991; 17: 167–71

    PubMed  CAS  Google Scholar 

  14. Prober CG, Stevenson DK, Benetz WE. The use of antibiotics in neonates weighting less than 1200g. Pediatr Infect Dis J 1990; 9: 111–21

    Article  PubMed  CAS  Google Scholar 

  15. Sereni F, Assael BM, Melzi ML. Drugs, kidney, development [in Italian]. I J P 1988; 14: 463–73

    Google Scholar 

  16. Padovani EM, Fanos V, Benoni G, et al. Urinary excretion of alanine-aminopeptidase and N-acetyl-β-D-glucosaminidase in preterm neonates on antibiotic therapy. Clin Trials J 1988; 25(4): 266–76

    Google Scholar 

  17. Manian FA, Stone WJ, Alford RH. Adverse antibiotics effects associated with renal insufficiency. Rev Infect Dis 1990; 12: 236–49

    Article  PubMed  CAS  Google Scholar 

  18. Sethy K, Diamond IH. Aminoglycoside nephrotoxicity and its predictability. Nephron 1981; 27: 265–70

    Article  Google Scholar 

  19. Kubota K, Suganuma T, Sagaki T, et al. An approach to forecast aminoglycoside-related nephrotoxicity from routinely collected data. Ther Drug Monit 1988; 10: 410–20

    Article  PubMed  CAS  Google Scholar 

  20. Guder WG, Hofmann W. Markers for the diagnosis and monitoring of renal tubular lesions. Clin Nephrol 1992; 38(91): 93–7

    Google Scholar 

  21. Plebani M, Mussap M, Bertelli L, et al. Assessment of cystatin C serum levels in healthy pregnant women and in their new-borns respectively. Med Surg Ped 1997; 19(5): 325–30

    CAS  Google Scholar 

  22. Mussap M, Plebani M, Fanos V, et al. Serum cystatin C in healthy full-term newborns: preliminary reference values for a promising endogenous marker of glomerular filtration rate. Prenat Neonat Med 1997; 2: 338–42

    CAS  Google Scholar 

  23. Porter GA. Urinary biomarkers and nephrotoxicity. Miner Electrolyte Metab 1994; 20: 181–6

    PubMed  CAS  Google Scholar 

  24. Scherberich JE. Urinary proteins of tubular origin: basic immunochemical and clinical aspects. Am J Nephrol 1990; 10(91): 43–51

    Article  PubMed  Google Scholar 

  25. Langhendries J P, Battisti O, Bertrand JM. Aminoglycoside nephrotoxicity and urinary excretion of N-acetyl-Beta-D-glucosaminidase. Biol Neonat 1988; 53: 253–9

    Article  CAS  Google Scholar 

  26. Fisher DA, Lakshmanan J. Metabolism and effects of epidermal growth factor and related growth factors in mammals. Endocr Rev 1990; 11(3): 418–42

    Article  PubMed  CAS  Google Scholar 

  27. Schardijn GHC, Van Eps Statius LW. Beta-2 microglobulin: its significance in the evaluation of renal function. Kidney Int 1987; 32: 635–41

    Article  PubMed  CAS  Google Scholar 

  28. Fanos V, Padovani EM. Importance of evaluation of urinary enzymes and microglobulins in the neonatal period [in Italian] I J P 1995; 6: 775–83

    Google Scholar 

  29. Takagi K, Kin K, Itoh Y, et al. Human Alpha-l microglobulin levels in various body fluids. J Clin Pathol 1980; 33: 786–96

    Article  PubMed  CAS  Google Scholar 

  30. Weber MH, Verwiebe R. Alpha 1 microglobulin (protein HC): features of a promising indicator of proximal tubular disfunction. Eur J Clin Chem Clin Biochem 1992; 30: 683–91

    PubMed  CAS  Google Scholar 

  31. Padovani EM, Fanos V, Mussap M, et al. Neonatal tubular proteinuria: normality values of urinary alpha-1 microglobulin [in Italian]. I J P 1992; 3(18): 323–5

    Google Scholar 

  32. Tsukahara H, Huraoka M, Kuriyama M, et al. Urinary Alpha 1 microglobulin as an index of proximal tubular function in early infancy. Pediatr Nephrol 1993; 7: 199–201

    Article  PubMed  CAS  Google Scholar 

  33. Smith GC, Winterborn MH, Taylor CM, et al. Assessment of retinol-binding protein excretion in normal children. Pediatr Nephrol 1994; 8: 148–50

    Article  PubMed  CAS  Google Scholar 

  34. Burghard R, Gordijani N, Leititis J, et al. Protein analysis in amniotic fluid and fetal urine for the assessment of fetal renal function and disfunction. Fetal Ther 1987; 2: 188–96

    Article  PubMed  CAS  Google Scholar 

  35. Padovani EM, Fanos V, Mussap M, et al. Enzyme and tubular protein contents in amniotic fluid. Eur J Obstet Gynecol Reprod Biol 1994; 55: 129–33

    Article  PubMed  CAS  Google Scholar 

  36. Mussap M, Fanos V, Piccoli A, et al. Low molecular mass protein and urinary enzymes in amniotic fluid of healthy pregnant woman at progressive stages of gestation. Clin Biochem 1996; 1: 1–8

    Google Scholar 

  37. Nolte S, Mueller B, Pringsheim W. Serum Alpha l microglobulin and Beta microglobulin for the estimation of fetal glomerular renal function. Pediatr Nephrol 1991; 5: 573–7

    Article  PubMed  CAS  Google Scholar 

  38. Donaldson MDC, Chambers RE, Woolridge W. Stability of alpha-l microglobulin, beta-2 microglobulin and retinol binding protein in urine. Clin Chim Acta 1992; 179: 73–8

    Article  Google Scholar 

  39. Gordjani N, Burghard R, Muller L, et al. Urinary excretion of adenosine deaminase binding protein in neonates treated with tobramycin. Pediatr Nephrol 1995; 9: 419–22

    Article  PubMed  CAS  Google Scholar 

  40. Raab WP. Diagnostic value of urinary enzyme determinations. Clin Chem 1972; 18: 5–25

    PubMed  CAS  Google Scholar 

  41. Price RG. Urinary enzyme nephrotoxicity and renal disease. Toxicology 1982; 23: 99–134

    Article  PubMed  CAS  Google Scholar 

  42. Price G. The role of NAG (N-acetyl-Beta-D-glucosaminidase) in the diagnosis of kidney disease including the monitoring of nephrotoxicity. Clin Nephrol 1992; 36 (1 Suppl.): 14S–19S

    Google Scholar 

  43. Tulkens PM. Pharmacokinetic and toxicological evaluation of a once-daily regimen versus conventional schedules of netilmicin and amikacin. J Antimicrob Chemother 1991; 27: 49–61

    Article  PubMed  Google Scholar 

  44. Mondorf AW, Folkenberg FW, Lindner A. Kidney tolerance of vancomycin: an update on the use of glycopeptides in the management of Gram positive infections. Macclesfield: Pennine Press, 1993: 10–5

    Google Scholar 

  45. Gibey R, Dupond JL, Henry JC. Urinary N-acetyl-Beta-D-glucosaminidase (NAG) isoenzyme profiles: a tool evaluating nephrotoxicity of aminoglycosides and cephalosporins. Clin Chim Acta 1984; 137: 1–11

    Article  PubMed  CAS  Google Scholar 

  46. Gouyon JB, Aujard Y, Abisron A, et al. Urinary excretion of N-acetyl-glucosaminidase and Beta 2 microglobulin as early markers of gentamicin nephrotoxicity in neonates. Dev Pharmacol Ther 1987; 10: 145–52

    PubMed  CAS  Google Scholar 

  47. Watanabe K, One A, Hyreta Y, et al. Maturational changes and origin of urinary human epidermal growth factor in the neonatal period. Biol Neonate 1989; 56: 241–5

    Article  PubMed  CAS  Google Scholar 

  48. Taira T, Yoshimura A, Lizuka K, et al. Urinary epidermal growth factor levels in patients with acute renal failure. Am J Kidney Dis 1993; 22(5): 656–61

    PubMed  CAS  Google Scholar 

  49. Ford DM. Basic mechanism of aminoglycoside nephrotoxicity. Pediatr Nephrol 1994; 8(5): 635–6

    Google Scholar 

  50. Saez-Llorens X, McCracken GH. Clinical pharmacology of antibacterial agents. In: Remington JS, Klein JO, editors. Infectious disease of the fetus, newborn and infants. Philadelphia: W.B. Saunders, 1995: 1287–336

    Google Scholar 

  51. Mussap M, Fanos V, Ruzzante N, et al. Urinary N-acetyl-/gb-D-glucosaminidase (NAG) and alpha 1 microglobulin excretion as an index of renal tubular dysfunction in the neonate. Eur J Lab Med 1997; 5(3): 1–4

    Google Scholar 

  52. Borderon JC, Langer J, Ramponi N, et al. Survey of antibiotic therapies in pediatric intensive care units [in French]. Ann Pediatr 1992; 39: 27–36

    CAS  Google Scholar 

  53. Hoitsma JA, Wetzels JFM, Koene R. Drug-induced nephrotoxicity: aetiology, clinical Features and management. Drug Saf 1991; 6(2): 131–47

    Article  PubMed  CAS  Google Scholar 

  54. Marra F, Partovi N, Jewerson P. Aminoglycoside administration as a single daily dose: an improvement to current practice or a repeat of previous errors? Drugs 1996; 52(3): 344–70

    Article  PubMed  CAS  Google Scholar 

  55. Smith CR, Moore RD, Lietman PS. Studies of risk factors for aminoglycoside nephrotoxicity. Am J Kidney Dis 1986; 8: 308–16

    PubMed  CAS  Google Scholar 

  56. Elinder G, Aperia A. Development of glomerular filtration rate and excretion of beta-2 microglobulin in neonates during gentamicin treatment. Acta Paediatr Scand 1983; 219-24

  57. Fanos V, Mussap M, Verlato G, et al. Evaluation of antibiotic-induced nephrotoxicity in preterm newborns by determining urinary alpha-1 microglobulin. Pediatr Nephrol 1996; 10: 645–7

    Article  PubMed  CAS  Google Scholar 

  58. Tessin I, Trollfors B, Bergmark J, et al. Enzymuria in neonates during treatment with tobramycin of ceftazidime. Pediatr Infect Dis J 1988; 7: 142–3

    Article  PubMed  CAS  Google Scholar 

  59. Leititis JU, Zimmerbackl LB, Burghard R, et al. Evolution of local renal function in newborn infants under tobramycin therapy. Dev Pharmacol Ther 1991; 17: 154–60

    PubMed  CAS  Google Scholar 

  60. Moestrup S, Cin S, Varum C, et al. Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs. J Clin Invest 1995; 96: 1404–13

    Article  PubMed  CAS  Google Scholar 

  61. Hock R, Anderson RJ. Prevention of drug-induced nephrotoxicity in the intensive care unit. J Crit Care 1995; 10(1): 33–43

    Article  PubMed  CAS  Google Scholar 

  62. Humes DH. Aminoglycoside nephrotoxicity. Kidney Int 1988; 33: 900–11

    Article  PubMed  CAS  Google Scholar 

  63. Clark PMR, Bryant TN, Lowes JA, et al. Neonatal renal function assessment. Arch Dis Child 1989; 64: 1264–9

    Article  PubMed  CAS  Google Scholar 

  64. Toubeau G, Laurent G, Carlier MB, et al. Tissue repair in rat kidney cortex after short treatment with aminoglycosides at low doses. Lab Invest 1986; 54: 385–93

    PubMed  CAS  Google Scholar 

  65. Kosek JD, Mazze RI, Cousins MD. Nephrotoxicity of gentamicin. Lab Invest 1974; 30: 48–57

    PubMed  CAS  Google Scholar 

  66. Gilbert T, Nabarra B, Merlet Benichou C. Light and electron microscopy analysis of the kidney in newborn rats exposed to gentamicin in utero. Am J Pathol 1988; 130: 33–43

    PubMed  CAS  Google Scholar 

  67. Smaoui H, Mallié JP, Cheignon M, et al. Glomerular alterations in rat neonates after transplacental exposure to gentamicin. Nephron 1991; 59: 626–31

    Article  PubMed  CAS  Google Scholar 

  68. Smaoui H, Schaeverbeke M, Mallié J P, et al. Transplacental effects of gentamicin on endocytosis in rat renal proximal tubular cells. Pediatr Nephrol 1994; 8(4): 447–50

    Article  PubMed  CAS  Google Scholar 

  69. Kahlmeter G, Dehlager JI. Aminoglycoside toxicity: a review of clinical studies published between 1975 and 1982. J Antimicrob Chemother 1984; 135: 9–22

    Article  Google Scholar 

  70. Ibrahim S, Langhendries JP, Bernard A. Urinary phospholipids excretion in neonates treated with amikacin. Int J Clin Pharmacol Res 1994; 14: 149–56

    PubMed  CAS  Google Scholar 

  71. Powel SH, Thomson W, Luth MA, et al. Once daily versus continuous aminoglycoside dosing: efficacy and toxicity in animal and clinical studies of gentamicin, netilmicin and tobramicin. J Infect Dis 1983; 147: 918–32

    Article  Google Scholar 

  72. Giuliano RA, Veerpoten GA, De Broe ME. The effect of dosing strategy on kidney cortical accumulation of aminoglycosides in rats. Am J Kidney Dis 1986; 8: 297–303

    PubMed  CAS  Google Scholar 

  73. Verpooten GA, Giuliano RA, Verbist L, et al. Once daily dosing decreases renal accumulation of gentamicin and netilmicin. Clin Pharmacol Ther 1989; 45: 22–7

    Article  PubMed  CAS  Google Scholar 

  74. Prins JM, Buller HR, Kuijper EJ, et al. Once versus thrice daily gentamicin in patients with serious infection. Lancet 1993; 341: 335–9

    Article  PubMed  CAS  Google Scholar 

  75. Giamarellou H, Yalloures K, Petrikkes V. Comparative kinetics and efficacy of amikacin administered once or twice daily in the treatment of systemic gram-negative infections. J Antimicrob Chemother 1991; 27 (M Suppl.): 149–151S

    Article  Google Scholar 

  76. Kafetzis DA, Sianidou L, Vlahos E. Clinical and pharmacokinetic study of a single daily dose of amikacin in pediatric patients with severe gram-negative infectious. J Antimicrob Chemother 1991; 27 (M Suppl.): 103–12

    Article  Google Scholar 

  77. Colding H, Brygge K, Brendstrup L, et al. Enzymuria in neonates receiving continuous intravenous infusion of gentamicin. APMIS 1992; 100: 119–24

    Article  PubMed  CAS  Google Scholar 

  78. Skopnik H, Wallraf R, Nies B, et al. Pharmacokinetics and antibacterial activity of daily gentamicin. Arch Dis Child 1992; 67: 57–61

    Article  PubMed  CAS  Google Scholar 

  79. Springate JE. Toxic nephropathies. Curr Opin Pediatr 1997; 9: 166–9

    Article  PubMed  CAS  Google Scholar 

  80. Deamer R, Dial L. The evolution of aminoglycoside therapy: a single daily dose. Ann Fam Phys 1996; 53: 1782–6

    CAS  Google Scholar 

  81. Hatala R, Dinh R, Cook D. Once daily aminoglycoside dosing in immunocompetent adults: a meta-analysis. Ann Intern Med 1996; 124: 717–24

    PubMed  CAS  Google Scholar 

  82. Sawyers CL, Moore RD, Lerner SA, et al. A model for predicting nephrotoxicity in patients treated with aminoglycosides. J Infect Dis 1986; 153: 1062–8

    Article  PubMed  CAS  Google Scholar 

  83. Itsarayoungyuen S, Riff L, Schanb V. Tobramicin and gentamicin are equally safe for neonates: results of a double-blind randomized trial with quantitative assessment of renal function. Pediatr Pharmacol 1982; 2: 143–55

    CAS  Google Scholar 

  84. Adelman RD, Zakauddin P. Urinary enzyme activities in children and neonates receiving gentamicin therapy. Dev Pharmacol Ther 1980; 1: 325–32

    CAS  Google Scholar 

  85. Sawchuck R, Zaske DE, Cipolla RJ. Kinetic models for gentamicin with the use of individual patients parameters. Clin Pharmacol Ther 1977; 21: 360–9

    Google Scholar 

  86. Robinson JD, Laizure SC, Fischer ES, et al. Simkin (Simulation Kinetic) Pharmacokinetics System. Release 4.1. Gainesviele, 1991

  87. Padovani EM, Pistolesi C, Fanos V, et al. Pharmacokinetics of amikacin in neonates. Dev Pharmacol Ther 1993; 20: 167–73

    PubMed  CAS  Google Scholar 

  88. Lehly DJ, Braun BI, Tholl DA, et al. Can pharmacokinetic dosing decrease nephrotoxicity associated with aminoglycoside therapy? J Am Soc Nephrol 1993; 4(1): 81–90

    Google Scholar 

  89. Olovarria F, Krause S, Barranco L, et al. Renal function in full-term newborns following neonatal asphixia. Clin Pediatr 1987; 26: 334–42

    Article  Google Scholar 

  90. Perlman JM, Tack ED, Martin T, et al. Acute systemic organ injury in term infants after asphyxia. Am J Dis Child 1989; 143: 617–23

    PubMed  CAS  Google Scholar 

  91. Tsukahara H, Yoshimoto M, Saito M, et al. Assessment of tubular function in neonates using urinary beta-2 microglobulin. Pediatr Nephrol 1990; 4: 512–4

    Article  PubMed  CAS  Google Scholar 

  92. Kojima T, Kobayashi T, Matsuzaki S, et al. Effects of perinatal asphyxia and myoglobinuria on development of acute neonatal renal failure. Arch Dis Child 1985; 60: 908–12

    Article  PubMed  CAS  Google Scholar 

  93. Tack ED, Perlman JM, Robson AM. Renal injury in sick newborn infants: a prospective evaluation using urinary beta-2 microglobulin concentrations. Pediatrics 1988; 81(3): 432–40

    PubMed  CAS  Google Scholar 

  94. Roberts DS, Haycock GB, Dalton RN, et al. Prediction of acute renal failure after birth asphyxia. Arch Dis Child 199; 65: 1021-8

  95. Guignard J P, Torrado A, Mazouni JM, et al. Renal function in respiratory distress syndrome. J Pediatr 1976; 88(5): 845–50

    Article  PubMed  CAS  Google Scholar 

  96. Zanardo V, Da Rial R, Faggian D, et al. Urinary Beta 2 microglobulin excretion in prematures with respiratory distress syndrome. Child Nephrol Urol 1990; 10: 135–8

    PubMed  CAS  Google Scholar 

  97. Aperia A, Broberger V. β2-microglobulin as indicator of renal tubular maturation and disfunction in the newborn. Acta Pediatr Scand 1979; 68: 669–76

    CAS  Google Scholar 

  98. Padovani EM, Fanos V, Di Martino R, et al. Hyperbilirubinemia, phototherapy and tubular renal function in preterm newborn [in Italian]. Neonatologica 1989; 3(1): 27–31

    Google Scholar 

  99. Zager RA. Endotoxemia, renal hypoperfusion and fever: interactive risk factors for aminoglycoside and sepsis-associated acute renal failure. Am J Kidney Dis 1992; XX: 223–30

    Google Scholar 

  100. Guignard J P. Le rein immature: implications cliniques. Proceedings of the XVes Journèes Nationales de Néonatologie Progrès Neonat 1985; 5: 48–68

    Google Scholar 

  101. Giapros VI, Andronikou S, Cholesas VI, et al. Renal function in premature infants during aminoglycoside therapy. Pediatr Nephrol 1995; 9(2): 163–6

    Article  PubMed  CAS  Google Scholar 

  102. Mannion JC, Block R, Popovich NG. Cephalosporin-aminoglycoside synergistic nephrotoxicity: fact or fiction? Drug Intell Clin Pharm 1981; 15: 248–55

    PubMed  CAS  Google Scholar 

  103. Besunder JB, Reed MD, Blumer JD. Principles of drug biodisposition in the neonate: a critical evaluation of the pharmacokinetic-pharmacodynamic interface (part II). Clin Pharmacokinet 1988; 14: 261–86

    Article  PubMed  CAS  Google Scholar 

  104. Assael BM, Chiabrondo C, Gagliardi L, et al. Prostaglandins and aminoglycoside nephrotoxicity. Toxicol Appl Pharmacol 1985; 78: 386–90

    Article  PubMed  CAS  Google Scholar 

  105. Suzuki T, Togari H. Effect of hypoxia on renal prostaglandins E2 production in human and rat neonates. Biol Neonate 1992; 62: 127–35

    Article  PubMed  CAS  Google Scholar 

  106. Gouyon JB, Guignard J P. Rein et diuretiques. Progrès Neonat 1998; 8: 224–57

    Google Scholar 

  107. Adelman RD, Spangler WL, Beason F. Furosemide enhancement of experimental nephrotoxicity: comparison of functional and morphological changes with activities of urinary enzymes. J Infect Dis 1979; 140: 340–2

    Article  Google Scholar 

  108. Fanos V, Khoory BJ, Benini D, et al. Antibiotics nephropathy in the neonatal age [in Italian]. Doctor Pediatr 1997; 12(6): 5–14

    Google Scholar 

  109. Umaña MA, Odio CM, Castro E, et al. Evaluation of aztreonam and ampicillin versus amikacin and ampicillin for treatment of neonatal bacterial infections. Pediatr Infect Dis J 1990; 9: 175–80

    Article  PubMed  Google Scholar 

  110. Fanos V, Padovani EM, Benoni G, et al. Laboratory diagnostic of renal damage in preterm newborns [in Italian]. Acta Pediatr Lat 1990; 43(2): 124–31

    Google Scholar 

  111. Aujard Y. Neonatal infections — a special case? Res Clin Forums 1997; 19: 67–77

    Google Scholar 

  112. Odio C. Sepsis in children — a therapeutic approach. Res Clin Forums 1997; 19(7): 31–40

    Google Scholar 

  113. Rodvold KA, Gentry CA, Plank GS, et al. Bayesian forecasting of serum vancomycin concentrations in neonates and infants. Ther Drug Monit 1995; 17: 239–46

    Article  PubMed  CAS  Google Scholar 

  114. Fanos V, Verlato G, Dal Moro A, et al. Staphylococcus epidermidis isolation and antibiotic resistance in a neonatal intensive care unit. J Chemother 1995; 7(1): 26–9

    PubMed  CAS  Google Scholar 

  115. Fanos V, Kacet N, Mosconi G. A review of teicoplanin in the treatment of serious neonatal infections. Eur J Pediatr 1997; 156: 423–7

    Article  PubMed  CAS  Google Scholar 

  116. Tarral E, Jehl F, Tarral A, et al. Pharmacokinetics of teicoplanin in children. J Antimicrob Chemother 1988; A Suppl.: 45S-51S

  117. Terragna A, Ferrea G, Loy A, et al. Pharmacokinetics of teicoplanin in pediatric patients. Antimicrob Agents Chemother 1988; 32: 1223–6

    Article  PubMed  CAS  Google Scholar 

  118. Rodvold KA, Everett JA, Pryka RD, et al. Pharmacokinetics and administration regimens of vancomycin in neonates, infants and children. Clin Pharmacokinet 1997; 33(1): 32–51

    Article  PubMed  CAS  Google Scholar 

  119. Wallace MR, Mascola JR, Oldfield EC III. Red man syndrome: incidence, etiology, and prophylaxis. J Infect Dis 1991; 164: 1180–5

    Article  PubMed  CAS  Google Scholar 

  120. L, Richter A, Malene M, et al. Glycopeptide induced anaphylactoid reaction [in Italian]. Antibioter Pratica 1984; 3: 80–6

    Google Scholar 

  121. Odio C, Mohs E, Sklar FH, et al. Adverse reactions to vancomycin used as prophylaxis for CSF shunt procedures. Am J Dis Child 1984; 138: 17–9

    PubMed  CAS  Google Scholar 

  122. Bailie GR, Neal D. Vancomycin ototoxicity and nephrotoxicity: a review. Med Toxicol 1988; 3: 376–86

    CAS  Google Scholar 

  123. Dean RP, Wagner DJ, Toplin MD. Vancomycin/aminoglycoside toxicity. J Pediatr 1985; 106: 861–2

    PubMed  CAS  Google Scholar 

  124. Lacouture PG, Epstein MF, Mitchell AA, et al. Vancomycin-associated shock and rash in newborn infants. J Pediatr 1987; 11: 615–6

    Google Scholar 

  125. Boussemart T, Cardona J, Berthier M, et al. Cardiac arrest associated with vancomycin in a neonate [letter]. Arch Dis Child 1995; 73 (F Suppl.): 123S

    Google Scholar 

  126. Beauchamp D, Gourde P, Simard M, et al. Subcellular localization of tobramycin and vancomycin given alone and in combination in proximal tubular cells, determined by immunogold labeling. Antimicrob Agents Chemother 1992; 36(10): 2204–10

    Article  PubMed  CAS  Google Scholar 

  127. Wood CA, Kohlhepp SJ, Kohnen PW, et al. Vancomycin enhancement of experimental nephrotoxicity. Antimicrob Agents Chemother 1986; 30: 20–4

    Article  PubMed  CAS  Google Scholar 

  128. Fauconneau B, De Lemos E, Pariat C. Chrononephrotoxicity in rat of a vancomycin and gentamicin combination. Pharmacol Toxicol 1992; 71: 31–6

    Article  PubMed  CAS  Google Scholar 

  129. Dufful SB, Begg EJ. Vancomycin toxicity: what is the evidence for dose dependency? Adv Drug React Toxicol Rev 1994; 13(2): 103–14

    Google Scholar 

  130. Chow AW, Azar RW. Glycopeptides and nephrotoxicity. Intensive Care Med 1994; 20: 523–9

    Article  Google Scholar 

  131. Faber BT, Moellering RC. Retrospective study of the toxicity of preparation of vancomycin from 1974 to 1981. Antimicrob Agents Chemother 1985; 23: 138–41

    Article  Google Scholar 

  132. Phillips G, Golledge C. Vancomycin and teicoplanin: something old, something new. Med J Aust 1992; 156: 53–7

    PubMed  CAS  Google Scholar 

  133. Fanos V, Dall’Agnola A. Antibiotic treatment of infections in neonates: a review. Drugs. In press

  134. Shaad UB, McCracken GH, Nelson JD. Clinical Pharmacology and efficacy of vancomycin in pediatric patients. J Pediatr 1980; 96: 119–26

    Article  Google Scholar 

  135. Fogarty KA, Clain MC. Vancomycin: current perspectives and guidelines for use in the NICU. Neonatal Netw 1989; 7(5): 31–5

    PubMed  CAS  Google Scholar 

  136. Cantu TG, Yamanaka S, Yuen NA, et al. Serum vancomycin concentrations: reappraisal of their clinical value. Clin Infect Dis 1994; 18: 533–43

    Article  PubMed  CAS  Google Scholar 

  137. Moellering RC. Monitoring serum vancomycin levels: climbing the mountain because it is there. Clin Infect Dis 1994; 18: 544–6

    Article  PubMed  Google Scholar 

  138. Rybak MJ, Albrecht LS, Boike SC, et al. Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother 1990; 25: 679–87

    Article  PubMed  CAS  Google Scholar 

  139. Hardenbrook M, Kildoo CW, Gennrich JL, et al. Prospective evaluation of a vancomycin dosage guideline for neonates. Clin Pharmacy 1991; 10: 129–32

    Google Scholar 

  140. McDougall A, Ling EW, Levine M, et al. Vancomycin pharmacokinetics and dosing in premature neonates. Ther Drug Monit 1995; 17(4): 319–26

    Article  Google Scholar 

  141. Borderon JC, Laugier J, Chamboux C, et al. Continuous infusion of vancomycin in newborn infants [in French]. Pathol Biol 1994; 42(5): 525–9

    PubMed  CAS  Google Scholar 

  142. Saunders NJ. Why monitor peak vancomycin concentration? Lancet 1995; 345: 645–6

    Article  Google Scholar 

  143. Nahata MC. Lack of nephrotoxicity in pediatric patients receiving concurred vancomycin and aminoglycoside therapy. Chemotherapy 1987; 33: 302–4

    Article  PubMed  CAS  Google Scholar 

  144. Goren MP, Baker DKJ, Shenep JL. Vancomycin does not enhance amikacin induced tubular nephrotoxicity in children. Pediatr Infect Dis J 1989; 8: 278–82

    PubMed  CAS  Google Scholar 

  145. Ashbury WH, Daisey EH, Rose WB, et al. Vancomycin pharmacokinetics in neonates and infants: a retrospective evaluation. Ann Pharmacother 1993; 27: 490–8

    Google Scholar 

  146. Spivey JM, Gal P. Vancomycin pharmacokinetics in neonates [letter]. Am J Dis Child 1991; 140: 859

    Google Scholar 

  147. Wood MJ. The comparative efficacy and safety of teicoplanin and vancomycin. J Antimicrob Chemother 1996; 37: 209–22

    Article  PubMed  CAS  Google Scholar 

  148. Lewis P, Geroud JJ, Parenti F. A multicenter open clinical trial of teicoplanin infections caused by gram-positive bacteria. J Antimicrob Chemother 1996; A Suppl.: 61S-7S

  149. Dagan R, Einhorm SI, Howard CB, et al. Outpatient and inpatient teicoplanin treatment for serious gram-positive infections in children. Pediatr Infect Dis J 1993; 12 Suppl.: 17S–20S

    Article  Google Scholar 

  150. Peller P, Aichzolzen B, Fell J, et al. Safety and efficacy of teicoplanin in the treatment of gram-positive infection in pediatric patients in Germany. Pediatr Infect Dis J 1993; 12 Suppl.: 17S–20S

    Article  Google Scholar 

  151. Contra T. Teicoplanin/vancomycin: comparative studies in neutropenic patients [abstract]. Can J Infect 1995; 6: 309C

    Google Scholar 

  152. Kirschstein M, Jensen R, Nelskamp I, et al. Proteinuria in very low birth weight infants during teicoplanin and vancomycin prophylaxis for infection [abstract]. Pediatr Nephrol 1995; 9(6): 54C

    Google Scholar 

  153. Degraeuwe PL, Beuman GH, van Triel FH, et al. Use of teicoplanin in preterm neonates with staphylococcal late-onset neonatal sepsis. Biol Neonate 1998; 75(3): 287–95

    Article  Google Scholar 

  154. Moller JC, Nelskamp I, Jensen R, et al. Teicoplanin pharmacology in prophylaxis for coagulase-negative staphylococcal sepsis of very low birthweight infants. Acta Paediatr 1996; 85: 638–40

    Article  PubMed  CAS  Google Scholar 

  155. Fanos V, Mussap M, Khoory BJ, et al. Renal tolerability of teicoplanin in a case of neonatal overdose. J Chemother 1998; 10(5): 381–4

    PubMed  CAS  Google Scholar 

  156. Feketty FR. Safety of parenteral third generation cephalosporins. Am J Med 1990; 88 Suppl.: 38S–44S

    Article  Google Scholar 

  157. Cunha BA. Third generation cephalosporines: a review. Clin Ther 1992; 14: 616–52

    PubMed  CAS  Google Scholar 

  158. Ragnar Norrby S. Adverse reactions and interactions with newer cephalosporins and cephamycin antibiotics. Med Toxicol 1986; 1: 32–46

    Google Scholar 

  159. Tune BM. Renal tubular transport and nephrotoxicity of beta-lactam antibiotics: structure-activity relationship. Miner Electrolyte Metab 1994; 20: 221–31

    PubMed  CAS  Google Scholar 

  160. Tune BM. Nephrotoxicity of beta-lactam antibiotics: mechanism and strategies for prevention. Pediatr Nephrol 1997; 11(6): 768–72

    Article  PubMed  CAS  Google Scholar 

  161. Kaloyanides GJ. Antibiotic-related nephrotoxicity. Nephrol Dial Transplant 1994; 9 (4 Suppl.): 130S–4S

    Google Scholar 

  162. Goldstein RS, Pasino DA, Hewitt WR, et al. Biochemical mechanisms of cephaloridine nephrotoxicity: time and concentration dependence of peroxidative injury. Toxicol Appl Pharmacol 1986; 87: 297–305

    Article  Google Scholar 

  163. Tune BM, Fravert D. Mechanism of cephalosporin nephrotoxicity: a comparison of cephaloridine and chephaloglicyn. Kidney Int 1980; 18: 591–600

    Article  PubMed  CAS  Google Scholar 

  164. Silverblatt F. Phatogenesis of nephrotoxicity of cephalosporins and aminoglycosides: a review of current concepts. Rev Infect Dis 1982; 4: 360–5

    Article  CAS  Google Scholar 

  165. Schwartz GJ, Brion LC, Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children and adolescents. Pediatr Clin North Am 1987; 34(3): 571–90

    PubMed  CAS  Google Scholar 

  166. Kasama R, Sorbello A. Renal and electrolyte complications associated with antibiotic therapy. Am Fam Physician 1996; 53 (1 Suppl.): 227S–32S

    Google Scholar 

  167. Mondorf AW, Burk P, Stevanescu P, et al Effects of cefotaxime on the proximal tubules of human kidney. J Antimicrob Chemother 1980; 6 (A Suppl.): 155–9

    Article  PubMed  CAS  Google Scholar 

  168. Kuhlmann J. Renal safety of new broad-spectrum antibiotics [in German]. Munch Med Wochenschr 1983; 125 (2 Suppl.): 212–22

    Google Scholar 

  169. Hartman HG, Sutzler GA, Istrighans H, et al. Renal tolerance of cefotaxime after the surgical intervention. Clin Trials J 1983; 9: 327–39

    Google Scholar 

  170. Ninane G. Cefotaxime (HR 756) and nephrotoxicity [letter]. Lancet 1979; I(8111): 332

    Article  Google Scholar 

  171. Jacobs RF, Darville T, Parks JA. Safety profile and efficacy of cefotaxime for the treatment of hospitalized children. Clin Infect Dis 1992; 14: 56–65

    Article  PubMed  CAS  Google Scholar 

  172. Spritzer R, Kamp N, Dzolic G, et al. Five years of cefotaxime use in a neonatal intensive care unit. Pediatr Infect Dis J 1990; 9: 92–6

    Article  PubMed  CAS  Google Scholar 

  173. Puthicheary SD, Goldsworthy PJ. Ceftazidime and cefotaxime: the clinician’s choice. Clin Ther 1984; 11(2): 186–204

    Google Scholar 

  174. Kissling M, Ruch W, Fernex W. Ceftriaxone in pediatric patients: an analysis of 4743 cases described in Literature. Medipress 1988; 4: 1–7

    Google Scholar 

  175. Chu ML, Wang CC, Ho LJ. Once daily ceftriaxone for the treatment of meningitis and other serious infections in children. Medipress 1988; 4: 8–12

    Google Scholar 

  176. Wiese G. Treatment of neonatal sepsis with ceftriaxone/gentamicin and with azlocillin/gentamicin: a clinical comparison of efficacy and tolerability. Chemotherapy 1988; 34: 158–63

    Article  PubMed  CAS  Google Scholar 

  177. Bradley JS, Ching DLK, Wilson TA, et al. Once daily ceftriaxone to complete therapy of uncomplicated Group B Streptococcal infection in the neonate. Clin Pediatr 1992 May; 274-8

  178. Kaplan SL. Serious pediatric infections. Am J Med 1990; 88 (4A Suppl.): 18S–24S

    Article  PubMed  CAS  Google Scholar 

  179. Dajani AS. Cefotaxime-safety, spectrum and future prospects. Res Clin Forums 1997; 19(7): 57–64

    Google Scholar 

  180. Fanos V, Fostini R, Panebianco A. Ceftazidime in common pediatric infections: experience on 262 cases [in Italian]. Clin Ter 1991; 13: 327–32

    Google Scholar 

  181. Fanos V, Fostini R, Chiaffoni GP, et al. Ceftazidime: clinical efficacy, antibacterial activity and tolerance in the treatment of neonatal infections. Curr Ther Res 1985, 38: 640–5

    Google Scholar 

  182. Mondorf AW, Schereberich JE, Stefanescu J, et al. Eliminations of brush border membrane protein in urine caused by toxic alterations of tubular cells. Contrib Nephrol 1981; 24–99: 108

    Google Scholar 

  183. Cecconi M, Manfredi R, Cecarin L, et al. Early indicators of nephrotoxicity: comparison of two antibiotics. Int J Clin Pharmacol Ther Toxicol 1987; 25: 452–7

    PubMed  CAS  Google Scholar 

  184. Fanos V. Cephalosporins and the neonatal kidney. Proceedings of the 8th International Workshop on Neonatal Nephrology. Cataldi L, Fanos V, editors. 1998 Apr 14; Rome. Il Pediatra XX; 8: 39–42

    Google Scholar 

  185. Paap CM, Nahata MC. Clinical pharmacokinetics of antibacterial drugs in neonates. Clin Pharmacokinet 1990; 19(4): 280–318

    Article  PubMed  CAS  Google Scholar 

  186. Edwards MS. Antimicrobial therapy in pregnancy and neonates. Clin Perinatol 1997; 24(1): 91–105

    Google Scholar 

  187. Fried T. Acute interstitial nephritis: why do the kidneys fail? Postgrad Med 1993; 5: 105–20

    Google Scholar 

  188. Koren G. The nephrotoxic potential of drugs and chemicals: pharmacological basis and clinical relevance. Med Toxicol 1989; 4: 59–72

    CAS  Google Scholar 

  189. Kuigh M. Adverse drug reactions in neonates. J Clin Pharmacol 1994; 34(2): 128–35

    Google Scholar 

  190. Neu HC. Carbenicillin and ticarcillin. Med Clin North Am 1982; 66(1): 61–77

    PubMed  CAS  Google Scholar 

  191. Freij BJ, McCracken GH Jr, Olsen KD, et al. Pharmacokinetics of imipenem-cilastatin in neonates. Antimicrob Agents Chemother 1985; 27(4): 431–5

    Article  PubMed  CAS  Google Scholar 

  192. Calandra G, Brown K, Grad C, et al. Review of adverse experiences and tolerability in the first 2,516 patients treated with imipenem/cilastatin. Am J Med 1985; 78 (6A Suppl.): 73S–8S

    Article  Google Scholar 

  193. Clissold SP, Todd PA, Campoli-Richards DM. Imipenem/cilastatin: a review of its antibiotic activity, pharmacokinetics properties and therapeutic efficacy. Drugs 1987; 33: 183–241

    Article  PubMed  CAS  Google Scholar 

  194. Eng RH, Munsif AR, Yangco BG, et al. Seizure propensity with imipenem. Arch Intern Med 1989; 149(8): 1881–3

    Article  PubMed  CAS  Google Scholar 

  195. Arrietta A. Use of meropenem in treatment of serious infections in children: review of current literature. Clin Infect Dis 1997; 24 Suppl. 2: 207S–12S

    Article  Google Scholar 

  196. Bradley JS. Meropenem: a new extremely broad spectrum betalactam antibiotic for serious infections in pediatrics. Pediatr Infect Dis J 1997; 16: 263–8

    Article  PubMed  CAS  Google Scholar 

  197. Lebel MH, McCracken GH. Aztreonam: review of the clinical experience and potential uses in pediatrics. Pediatr Infect Dis J 1988; 7: 331–9

    Article  PubMed  CAS  Google Scholar 

  198. Bosso JA, Black PG. The use of aztreonam in pediatric patients: a review. Pharmacotherapy 1991; 11: 20–5

    PubMed  CAS  Google Scholar 

  199. Brodgen R, Heel RC. Aztreonam: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 1986; 31: 96–130

    Article  Google Scholar 

  200. Millar MR, Gorham P, Baxter H, et al. Pharmacokinetics of aztreonam in very low birthweight neonates. Eur J Clin Microbiol 1987; 6: 691–2

    Article  PubMed  CAS  Google Scholar 

  201. Likitnukul S, McCracken GH, Threlkeld N, et al. Pharmacokinetics and plasma bactericidal activity of aztreonam in low-birth-weight infants. Antimicrob Agents Chemother 1987; 31: 81–3

    Article  PubMed  CAS  Google Scholar 

  202. Stutman HR, Marks MI, Swabb EA, et al. Single-dose pharmacokinetics of aztreonam in pediatric patients. Antimicrob Agents Chemother 1984; 26(2): 196–8

    Article  PubMed  CAS  Google Scholar 

  203. Sklavunu-Tsurutsoglu S, Gatzola-Karaveli M, Hatziioannidis K, et al. Efficacy of aztreonam in the treatment of neonatal sepsis. Rev Infect Dis 1991; 13 Suppl.: 591S–593S

    Article  Google Scholar 

  204. Costantanopoulos A, Thomaidou L, Loupa H, et al. Successful response of severe neonatal Gram-negative infection to treatment with aztreonam. Chemotherapy 1989; 35 (1 Suppl.): 101S–5S

    Article  Google Scholar 

  205. Cuzzolin L, Fanos V, Zambreri D, et al. Pharmacokinetics and renal tolerance of aztreonam in premature infants. Antimicrob Agents Chemother 1991; 35: 1726–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilios Fanos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fanos, V., Cataldi, L. Antibacterial-Induced Nephrotoxicity in the Newborn. Drug-Safety 20, 245–267 (1999). https://doi.org/10.2165/00002018-199920030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199920030-00005

Keywords

Navigation