Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • State of the Art
  • Published:

State-of-the-Art

Beyond building better brains: bridging the docosahexaenoic acid (DHA) gap of prematurity

Abstract

Long-chain polyunsaturated fatty acids (LCPUFA) including docosahexaenoic acid (DHA) are essential for normal vision and neurodevelopment. DHA accretion in utero occurs primarily in the last trimester of pregnancy to support rapid growth and brain development. Premature infants, born before this process is complete, are relatively deficient in this essential fatty acid. Very low birth weight (VLBW) infants remain deficient for a long period of time due to ineffective conversion from precursor fatty acids, lower fat stores and a limited nutritional provision of DHA after birth. In addition to long-term visual and neurodevelopmental risks, VLBW infants have significant morbidity and mortality from diseases specific to premature birth, including bronchopulmonary dysplasia, necrotizing enterocolitis, and retinopathy of prematurity. There is increasing evidence that DHA has protective benefits against these disease states. The aim of this article is to identify the unique needs of premature infants, review the current recommendations for LCPUFA provision in infants and discuss the caveats and innovative new ways to overcome the DHA deficiency through postnatal supplementation, with the long-term goal of improving morbidity and mortality in this at-risk population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Agostoni C, Marangoni F, Stival G, Gatelli I, Pinto F, Rise P et al. Whole blood fatty acid composition differs in term versus mildly preterm infants: small versus matched appropriate for gestational age. Pediatr Res 2008; 64 (3): 298–302.

    Article  CAS  Google Scholar 

  2. Lapillonne A, Groh-Wargo S, Gonzalez CH, Uauy R . Lipid needs of preterm infants: updated recommendations. J Pediatr 2013; 162 (3 Suppl): S37–S47.

    Article  CAS  Google Scholar 

  3. Clandinin MT, Van Aerde JE, Merkel KL, Harris CL, Springer MA, Hansen JW et al. Growth and development of preterm infants fed infant formulas containing docosahexaenoic acid and arachidonic acid. J Pediatr 2005; 146 (4): 461–468.

    Article  CAS  Google Scholar 

  4. Henriksen C, Haugholt K, Lindgren M, Aurvag AK, Ronnestad A, Gronn M et al. Improved cognitive development among preterm infants attributable to early supplementation of human milk with docosahexaenoic acid and arachidonic acid. Pediatrics 2008; 121 (6): 1137–1145.

    Article  Google Scholar 

  5. O'Connor DL, Hall R, Adamkin D, Auestad N, Castillo M, Connor WE et al. Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: a prospective, randomized controlled trial. Pediatrics 2001; 108 (2): 359–371.

    Article  CAS  Google Scholar 

  6. Carlson SE, Werkman SH . A randomized trial of visual attention of preterm infants fed docosahexaenoic acid until two months. Lipids 1996; 31 (1): 85–90.

    Article  CAS  Google Scholar 

  7. Birch EE, Birch DG, Hoffman DR, Uauy R . Dietary essential fatty acid supply and visual acuity development. Invest Ophthalmol Vis Sci 1992; 33 (11): 3242–3253.

    CAS  PubMed  Google Scholar 

  8. Fewtrell MS, Abbott RA, Kennedy K, Singhal A, Morley R, Caine E et al. Randomized, double-blind trial of long-chain polyunsaturated fatty acid supplementation with fish oil and borage oil in preterm infants. J Pediatr 2004; 144 (4): 471–479.

    Article  CAS  Google Scholar 

  9. Isaacs EB, Ross S, Kennedy K, Weaver LT, Lucas A, Fewtrell MS . 10-year cognition in preterms after random assignment to fatty acid supplementation in infancy. Pediatrics 2011; 128 (4): e890–e898.

    Article  Google Scholar 

  10. Fang PC, Kuo HK, Huang CB, Ko TY, Chen CC, Chung MY . The effect of supplementation of docosahexaenoic acid and arachidonic acid on visual acuity and neurodevelopment in larger preterm infants. Chang Gung Med J 2005; 28 (10): 708–715.

    PubMed  Google Scholar 

  11. Makrides M, Gibson RA, McPhee AJ, Collins CT, Davis PG, Doyle LW et al. Neurodevelopmental outcomes of preterm infants fed high-dose docosahexaenoic acid: a randomized controlled trial. JAMA 2009; 301 (2): 175–182.

    Article  CAS  Google Scholar 

  12. Smithers LG, Collins CT, Simmonds LA, Gibson RA, McPhee A, Makrides M . Feeding preterm infants milk with a higher dose of docosahexaenoic acid than that used in current practice does not influence language or behavior in early childhood: a follow-up study of a randomized controlled trial. Am J Clin Nutr 2010; 91 (3): 628–634.

    Article  CAS  Google Scholar 

  13. Westerberg AC, Schei R, Henriksen C, Smith L, Veierod MB, Drevon CA et al. Attention among very low birth weight infants following early supplementation with docosahexaenoic and arachidonic acid. Acta Paediatr 2011; 100 (1): 47–52.

    Article  CAS  Google Scholar 

  14. van Wezel-Meijler G, van der Knaap MS, Huisman J, Jonkman EJ, Valk J, Lafeber HN . Dietary supplementation of long-chain polyunsaturated fatty acids in preterm infants: effects on cerebral maturation. Acta Paediatr 2002; 91 (9): 942–950.

    Article  CAS  Google Scholar 

  15. Carlson SE, Werkman SH, Rhodes PG, Tolley EA . Visual-acuity development in healthy preterm infants: effect of marine-oil supplementation. Am J Clin Nutr 1993; 58 (1): 35–42.

    Article  CAS  Google Scholar 

  16. Martin CR, Dasilva DA, Cluette-Brown JE, Dimonda C, Hamill A, Bhutta AQ et al. Decreased postnatal docosahexaenoic and arachidonic acid blood levels in premature infants are associated with neonatal morbidities. J Pediatr 2011; 159 (5): 743–9 e1-2.

    Article  CAS  Google Scholar 

  17. Tiesset H, Pierre M, Desseyn JL, Guery B, Beermann C, Galabert C et al. Dietary (n-3) polyunsaturated fatty acids affect the kinetics of pro- and antiinflammatory responses in mice with Pseudomonas aeruginosa lung infection. J Nutr 2009; 139 (1): 82–89.

    Article  CAS  Google Scholar 

  18. Freedman SD, Weinstein D, Blanco PG, Martinez-Clark P, Urman S, Zaman M et al. Characterization of LPS-induced lung inflammation in cftr-/- mice and the effect of docosahexaenoic acid. J Appl Physiol 2002; 92 (5): 2169–2176.

    Article  CAS  Google Scholar 

  19. Joss-Moore LA, Wang Y, Baack ML, Yao J, Norris AW, Yu X et al. IUGR decreases PPARgamma and SETD8 Expression in neonatal rat lung and these effects are ameliorated by maternal DHA supplementation. Early Hum Dev 2010; 86 (12): 785–791.

    Article  CAS  Google Scholar 

  20. Rogers LK, Valentine CJ, Pennell M, Velten M, Britt RD, Dingess K et al. Maternal docosahexaenoic acid supplementation decreases lung inflammation in hyperoxia-exposed newborn mice. J Nutr 2011; 141 (2): 214–222.

    Article  CAS  Google Scholar 

  21. Rehan VK, Sakurai R, Corral J, Krebs M, Ibe B, Ihida-Stansbury K et al. Antenatally administered PPAR-gamma agonist rosiglitazone prevents hyperoxia-induced neonatal rat lung injury. Am J Physiol Lung Cell Mol Physiol 2010; 299 (5): L672–L680.

    Article  CAS  Google Scholar 

  22. Mayer K, Kiessling A, Ott J, Schaefer MB, Hecker M, Henneke I et al. Acute lung injury is reduced in fat-1 mice endogenously synthesizing n-3 fatty acids. Am J Respir Crit Care Med 2009; 179 (6): 474–483.

    Article  CAS  Google Scholar 

  23. Caplan MS, Russell T, Xiao Y, Amer M, Kaup S, Jilling T . Effect of polyunsaturated fatty acid (PUFA) supplementation on intestinal inflammation and necrotizing enterocolitis (NEC) in a neonatal rat model. Pediatr Res 2001; 49 (5): 647–652.

    Article  CAS  Google Scholar 

  24. Ohtsuka Y, Okada K, Yamakawa Y, Ikuse T, Baba Y, Inage E et al. omega-3 fatty acids attenuate mucosal inflammation in premature rat pups. J Pediatr Surg 2011; 46 (3): 489–495.

    Article  Google Scholar 

  25. Akisu M, Baka M, Coker I, Kultursay N, Huseyinov A . Effect of dietary n-3 fatty acids on hypoxia-induced necrotizing enterocolitis in young mice. n-3 fatty acids alter platelet-activating factor and leukotriene B4 production in the intestine. Biol Neonate 1998; 74 (1): 31–38.

    Article  CAS  Google Scholar 

  26. Lu J, Jilling T, Li D, Caplan MS . Polyunsaturated fatty acid supplementation alters proinflammatory gene expression and reduces the incidence of necrotizing enterocolitis in a neonatal rat model. Pediatr Res 2007; 61 (4): 427–432.

    Article  CAS  Google Scholar 

  27. Carlson SE, Montalto MB, Ponder DL, Werkman SH, Korones SB . Lower incidence of necrotizing enterocolitis in infants fed a preterm formula with egg phospholipids. Pediatr Res 1998; 44 (4): 491–498.

    Article  CAS  Google Scholar 

  28. SanGiovanni JP, Chew EY . The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 2005; 24 (1): 87–138.

    Article  CAS  Google Scholar 

  29. Pawlik D, Lauterbach R, Turyk E . Fish-oil fat emulsion supplementation may reduce the risk of severe retinopathy in VLBW infants. Pediatrics 2011; 127 (2): 223–228.

    Article  Google Scholar 

  30. Connor KM, SanGiovanni JP, Lofqvist C, Aderman CM, Chen J, Higuchi A et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 2007; 13 (7): 868–873.

    Article  CAS  Google Scholar 

  31. Heidary G, Vanderveen D, Smith LE . Retinopathy of prematurity: current concepts in molecular pathogenesis. Semin Ophthalmol 2009; 24 (2): 77–81.

    Article  Google Scholar 

  32. Matesanz N, Park G, McAllister H, Leahey W, Devine A, McVeigh GE et al. Docosahexaenoic acid improves the nitroso-redox balance and reduces VEGF-mediated angiogenic signaling in microvascular endothelial cells. Invest Ophthalmol Vis Sci 2010; 51 (12): 6815–6825.

    Article  Google Scholar 

  33. Pawlik D, Lauterbach R, Walczak M, Hurkala J, Sherman MP . Fish-oil fat emulsion supplementation reduces the risk of retinopathy in very low birth weight infants: a prospective, randomized study. JPEN J Parenter Enteral Nutr 2013; 38 (6): 711–716.

    Article  Google Scholar 

  34. Beken S, Dilli D, Fettah ND, Kabatas EU, Zenciroglu A, Okumus N . The influence of fish-oil lipid emulsions on retinopathy of prematurity in very low birth weight infants: a randomized controlled trial. Early Hum Dev 2014; 90 (1): 27–31.

    Article  CAS  Google Scholar 

  35. Kuipers RS, Luxwolda MF, Offringa PJ, Boersma ER, Dijck-Brouwer DA, Muskiet FA . Fetal intrauterine whole body linoleic, arachidonic and docosahexaenoic acid contents and accretion rates. Prostaglandins Leukot Essent Fatty Acids 2012; 86 (1-2): 13–20.

    Article  CAS  Google Scholar 

  36. Brenna JT, Varamini B, Jensen RG, Diersen-Schade DA, Boettcher JA, Arterburn LM . Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr 2007; 85 (6): 1457–1464.

    Article  CAS  Google Scholar 

  37. Lauritzen L, Jorgensen MH, Hansen HS, Michaelsen KF . Fluctuations in human milk long-chain PUFA levels in relation to dietary fish intake. Lipids 2002; 37 (3): 237–244.

    Article  CAS  Google Scholar 

  38. Berenhauser AC, Pinheiro do Prado AC, da Silva RC, Gioielli LA, Block JM . Fatty acid composition in preterm and term breast milk. Int J Food Sci Nutr 2012; 63 (3): 318–325.

    Article  CAS  Google Scholar 

  39. Berseth CL, Harris CL, Wampler JL, Hoffman DR, Diersen-Schade DA . Liquid human milk fortifier significantly improves docosahexaenoic and arachidonic acid status in preterm infants. Prostaglandins Leukot Essent Fatty Acids 2014; 91 (3): 97–103.

    Article  CAS  Google Scholar 

  40. Baack ML, Norris AW, Yao J, Colaizy T . Long-chain polyunsaturated fatty acid levels in US donor human milk: meeting the needs of premature infants? J Perinatol 2012; 32 (8): 598–603.

    Article  CAS  Google Scholar 

  41. Wojcik KY, Rechtman DJ, Lee ML, Montoya A, Medo ET . Macronutrient analysis of a nationwide sample of donor breast milk. J Am Diet Assoc 2009; 109 (1): 137–140.

    Article  Google Scholar 

  42. Abranches AD, Soares FV, Junior SC, Moreira ME . Freezing and thawing effects on fat, protein, and lactose levels of human natural milk administered by gavage and continuous infusion. J Pediatr 2014; 90 (4): 384–388.

    Article  Google Scholar 

  43. Lucas A, Morley R, Cole TJ, Lister G, Leeson-Payne C . Breast milk and subsequent intelligence quotient in children born preterm. Lancet 1992; 339 (8788): 261–264.

    Article  CAS  Google Scholar 

  44. Drover JR, Hoffman DR, Castaneda YS, Morale SE, Garfield S, Wheaton DH et al. Cognitive function in 18-month-old term infants of the DIAMOND study: a randomized, controlled clinical trial with multiple dietary levels of docosahexaenoic acid. Early Hum Dev 2011; 87 (3): 223–230.

    Article  Google Scholar 

  45. Anderson P, Doyle LW . Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA 2003; 289 (24): 3264–3272.

    Article  Google Scholar 

  46. Colombo J, Carlson SE, Cheatham CL, Shaddy DJ, Kerling EH, Thodosoff JM et al. Long-term effects of LCPUFA supplementation on childhood cognitive outcomes. Am J Clin Nutr 2013; 98 (2): 403–412.

    Article  CAS  Google Scholar 

  47. Qawasmi A, Landeros-Weisenberger A, Leckman JF, Bloch MH . Meta-analysis of long-chain polyunsaturated fatty acid supplementation of formula and infant cognition. Pediatrics 2012; 129 (6): 1141–1149.

    Article  Google Scholar 

  48. Tanaka K, Kon N, Ohkawa N, Yoshikawa N, Shimizu T . Does breastfeeding in the neonatal period influence the cognitive function of very-low-birth-weight infants at 5 years of age? Brain Dev 2009; 31 (4): 288–293.

    Article  CAS  Google Scholar 

  49. Koren N, Simsa-Maziel S, Shahar R, Schwartz B, Monsonego-Ornan E . Exposure to omega-3 fatty acids at early age accelerate bone growth and improve bone quality. J Nutr Biochem 2014; 25 (6): 623–633.

    Article  CAS  Google Scholar 

  50. Manley BJ, Makrides M, Collins CT, McPhee AJ, Gibson RA, Ryan P et al. High-dose docosahexaenoic acid supplementation of preterm infants: respiratory and allergy outcomes. Pediatrics 2011; 128 (1): e71–e77.

    Article  Google Scholar 

  51. Koletzko B, Lien E, Agostoni C, Bohles H, Campoy C, Cetin I et al. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J Perinat Med 2008; 36 (1): 5–14.

    Article  CAS  Google Scholar 

  52. Bowen RA, Wierzbicki AA, Clandinin MT . Does increasing dietary linolenic acid content increase the docosahexaenoic acid content of phospholipids in neuronal cells of neonatal rats? Pediatr Res 1999; 45 (6): 815–819.

    Article  CAS  Google Scholar 

  53. Al-Tamer YY, Mahmood AA . The influence of Iraqi mothers' socioeconomic status on their milk-lipid content. Eur J Clin Nutr 2006; 60 (12): 1400–1405.

    Article  CAS  Google Scholar 

  54. Dunstan JA, Mitoulas LR, Dixon G, Doherty DA, Hartmann PE, Simmer K et al. The effects of fish oil supplementation in pregnancy on breast milk fatty acid composition over the course of lactation: a randomized controlled trial. Pediatr Res 2007; 62 (6): 689–694.

    Article  CAS  Google Scholar 

  55. Weiss GA, Troxler H, Klinke G, Rogler D, Braegger C, Hersberger M . High levels of anti-inflammatory and pro-resolving lipid mediators lipoxins and resolvins and declining docosahexaenoic acid levels in human milk during the first month of lactation. Lipids Health Dis 2013; 12: 89.

    Article  CAS  Google Scholar 

  56. Chappell JE, Clandinin MT, McVey MA, Chance GW . Free fatty acid content of human milk: physiologic significance and artifactual determinants. Lipids 1985; 20 (4): 216–221.

    Article  CAS  Google Scholar 

  57. Yee JK, Mao CS, Ross MG, Lee WN, Desai M, Toda A et al. High oleic/stearic fatty-acid desaturation index in cord plasma from infants of mothers with gestational diabetes. J Perinatol 2014; 34 (5): 357–363.

    Article  CAS  Google Scholar 

  58. Thomas BA, Ghebremeskel K, Lowy C, Offley-Shore B, Crawford MA . Plasma fatty acids of neonates born to mothers with and without gestational diabetes. Prostaglandins Leukot Essent Fatty Acids 2005; 72 (5): 335–341.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MB receives institutional and foundation support from the following: NIH – NICHD (1K08HD078504), NIH – COBRE P20 GM103620-01A1, Gerber Foundation Pediatric Nutrition Grant (PN12-005-1372-3069), Sanford Health Seed Grant Research Fund, Sanford Research.

Author Contributions

MB developed concepts, wrote the manuscript and prepared it for submission. WH reviewed, revised and approved the final versions for submission and publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M L Baack.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, W., Baack, M. Beyond building better brains: bridging the docosahexaenoic acid (DHA) gap of prematurity. J Perinatol 35, 1–7 (2015). https://doi.org/10.1038/jp.2014.195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2014.195

Search

Quick links