Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • State of the Art
  • Published:

State-of-the-Art

Does IVIg administration yield improved immune function in very premature neonates?

Abstract

Intravenous immunoglobulin (IVIg) has been evaluated as an adjunctive therapy for neonatal sepsis with modest clinical success despite strong biological plausibility. Multiple factors contribute to this outcome, but perhaps none greater than the limited immune system function in newborns, especially in the very premature neonates. For very premature neonates (<30 weeks gestational age), understanding the effects of IVIg on specific immature immune system functions is particularly relevant given their preponderance to develop sepsis and therefore potentially benefit from IVIg-mediated immunoenhancement. Here, we review the available evidence for enhanced immune function after IVIg administration in very premature neonates and highlight areas for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Fanaroff AA, Korones SB, Wright LL, Wright EC, Poland RL, Bauer CB et al. A controlled trial of intravenous immune globulin to reduce nosocomial infections in very-low-birth-weight infants. National Institute Of Child Health And Human Development Neonatal Research Network. N Engl J Med 1994; 330: 1107–1113.

    Article  CAS  Google Scholar 

  2. Christensen RD, Hardman T, Thornton J, Hill HR . A randomized, double-blind, placebo-controlled investigation of the safety of intravenous immune globulin administration to preterm neonates. J Perinatol 1989; 9: 126–130.

    CAS  PubMed  Google Scholar 

  3. Kempf C, Stucki M, Boschetti N . Pathogen inactivation and removal procedures used in the production of intravenous immunoglobulins. Biologicals 2007; 35: 35–42.

    Article  CAS  Google Scholar 

  4. Stoll BJ, Hansen N . Infections in VLBW infants: studies from the NICHD neonatal research network. Semin Perinatol 2003; 27: 293–301.

    Article  Google Scholar 

  5. Adams-Chapman I, Stoll BJ . Neonatal infection and long-term neurodevelopmental outcome in the preterm infant. Curr Opin Infect Dis 2006; 19: 290–297.

    Article  Google Scholar 

  6. Wilson-Costello D, Friedman H, Minich N, Siner B, Taylor G, Schluchter M et al. Improved neurodevelopmental outcomes for extremely low birth weight infants in 2000–2002. Pediatrics 2007; 119: 37–45.

    Article  Google Scholar 

  7. Ohlsson A, Lacy JB . Intravenous immunoglobulin for suspected or subsequently proven infection in neonates. Cochrane Database Syst Rev 2004. Issue no.1. Article no. CD001239.

  8. The INIS Study. International neonatal immunotherapy study: non-specific intravenous immunoglobulin therapy for suspected or proven neonatal sepsis—an international, placebo controlled, multicentre randomised trial. BMC Pregnancy Childbirth 2008; 8: 52.

    Article  Google Scholar 

  9. Strand M, Jobe AH . The multiple negative randomized controlled trials in perinatology—why? Semin Perinatol 2003; 27: 343–350.

    Article  Google Scholar 

  10. Ohlsson A, Lacy JB . Intravenous immunoglobulin for preventing infection in preterm and/or low-birth-weight infants. Cochrane Database Syst Rev 2004. Issue no. 1. Article no. CD000361.

  11. Shah PS, Kaufman DA . Antistaphylococcal immunoglobulins to prevent staphylococcal infection in very low birth weight infants. Cochrane Database Syst Rev 2009. Issue no. 2. Article no. CD006449.

  12. Weisman LE, Thackray HM, Garcia-Prats JA, Nesin M, Schneider JH, Fretz J et al. Phase 1/2 double-blind, placebo-controlled, dose escalation, safety, and pharmacokinetic study of pagibaximab (BSYX-A110), an antistaphylococcal monoclonal antibody for the prevention of staphylococcal bloodstream infections, in very-low-birth-weight neonates. Antimicrob Agents Chemother 2009; 53: 2879–2886.

    Article  CAS  Google Scholar 

  13. Negi VS, Elluru S, Siberil S, Graff-Dubois S, Mouthon L, Kazatchkine MD et al. Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol 2007; 27: 233–245.

    Article  CAS  Google Scholar 

  14. Mussi-Pinhata MM, Rego MA . Immunological peculiarities of extremely preterm infants: a challenge for the prevention of nosocomial sepsis. J Pediatr (Rio J) 2005; 81: S59–S68.

    Article  Google Scholar 

  15. Kallman J, Schollin J, Schalen C, Erlandsson A, Kihlstrom E . Impaired phagocytosis and opsonisation towards group B streptococci in preterm neonates. Arch Dis Child Fetal Neonatal Ed 1998; 78: F46–F50.

    Article  CAS  Google Scholar 

  16. Wolach B, Dolfin T, Regev R, Gilboa S, Schlesinger M . The development of the complement system after 28 weeks’ gestation. Acta Paediatr 1997; 86: 523–527.

    Article  CAS  Google Scholar 

  17. Cates KL, Goetz C, Rosenberg N, Pantschenko A, Rowe JC, Ballow M . Longitudinal development of specific and functional antibody in very low birth weight premature infants. Pediatr Res 1988; 23: 14–22.

    Article  CAS  Google Scholar 

  18. Lewis D, Wilson C . Developmental Immunology and Role of Host Defenses in Fetal and Neonatal Susceptibility to Infection. In: Remington, Klein, Wilson and Baker (eds.) Infectious Diseases of the Fetus and Newborn Infant. 6th edn Elsevier Saunders: Philadelphia, 2006.

    Google Scholar 

  19. Baley JE . Neonatal sepsis: the potential for immunotherapy. Clin Perinatol 1988; 15: 755–771.

    Article  CAS  Google Scholar 

  20. Shaw CK, Thapalial A, Shaw P, Malla K . Intravenous immunoglobulins and haematopoietic growth factors in the prevention and treatment of neonatal sepsis: ground reality or glorified myths? Int J Clin Pract 2007; 61: 482–487.

    Article  CAS  Google Scholar 

  21. Tha-In T, Bayry J, Metselaar HJ, Kaveri SV, Kwekkeboom J . Modulation of the cellular immune system by intravenous immunoglobulin. Trends Immunol 2008; 29: 608–615.

    Article  CAS  Google Scholar 

  22. Maeda M, van Schie RC, Yuksel B, Greenough A, Fanger MW, Guyre PM et al. Differential expression of Fc receptors for IgG by monocytes and granulocytes from neonates and adults. Clin Exp Immunol 1996; 103: 343–347.

    Article  CAS  Google Scholar 

  23. Henneke P, Berner R . Interaction of neonatal phagocytes with group B streptococcus: recognition and response. Infect Immun 2006; 74: 3085–3095.

    Article  CAS  Google Scholar 

  24. Payne NR, Fleit HB . Extremely low birth weight infants have lower Fc gamma RIII (CD 16) plasma levels and their PMN produce less Fc gamma RIII compared to adults. Biol Neonate 1996; 69: 235–242.

    Article  CAS  Google Scholar 

  25. Fjaertoft G, Hakansson L, Foucard T, Ewald U, Venge P . CD64 (Fcgamma receptor I) cell surface expression on maturing neutrophils from preterm and term newborn infants. Acta Paediatr 2005; 94: 295–302.

    Article  CAS  Google Scholar 

  26. Carr R, Davies JM . Abnormal FcRIII expression by neutrophils from very preterm neonates. Blood 1990; 76: 607–611.

    CAS  PubMed  Google Scholar 

  27. Ng PC, Li K, Wong RP, Chui KM, Wong E, Fok TF . Neutrophil CD64 expression: a sensitive diagnostic marker for late-onset nosocomial infection in very low birthweight infants. Pediatr Res 2002; 51: 296–303.

    Article  CAS  Google Scholar 

  28. Fairchild KD, Hudson RG, Douglas SD, McKenzie SE, Polin RA . Effect of gamma interferon on expression of Fc gamma receptors in monocytes of newborn infants and adults. Clin Diagn Lab Immunol 1996; 3: 464–469.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Danikas DD, Karakantza M, Theodorou GL, Sakellaropoulos GC, Gogos CA . Prognostic value of phagocytic activity of neutrophils and monocytes in sepsis. Correlation to CD64 and CD14 antigen expression. Clin Exp Immunol 2008; 154: 87–97.

    Article  CAS  Google Scholar 

  30. Givner LB, Edwards MS, Anderson DC, Baker CJ . Immune globulin for intravenous use: enhancement of in vitro opsonophagocytic activity of neonatal serum. J Infect Dis 1985; 151: 217–220.

    Article  CAS  Google Scholar 

  31. Weisman LE, Cruess DF, Fischer GW . Opsonic activity of commercially available standard intravenous immunoglobulin preparations. Pediatr Infect Dis J 1994; 13: 1122–1125.

    Article  CAS  Google Scholar 

  32. Geelen SP, Fleer A, Bezemer AC, Gerards LJ, Rijkers GT, Verhoef J . Deficiencies in opsonic defense to pneumococci in the human newborn despite adequate levels of complement and specific IgG antibodies. Pediatr Res 1990; 27: 514–518.

    Article  CAS  Google Scholar 

  33. Peden DB, VanDyke K, Ardekani A, Mullett MD, Myerberg DZ, VanDyke C . Diminished chemiluminescent responses of polymorphonuclear leukocytes in severely and moderately preterm neonates. J Pediatr 1987; 111: 904–906.

    Article  CAS  Google Scholar 

  34. Bialek R, Bartmann P . Is there an effect of immunoglobulins and G-CSF on neutrophil phagocytic activity in preterm infants? Infection 1998; 26: 375–378.

    Article  CAS  Google Scholar 

  35. Fujiwara T, Taniuchi S, Hattori K, Kobayashi T, Kinoshita Y, Kobayashi Y . Effect of immunoglobulin therapy on phagocytosis by polymorphonuclear leucocytes in whole blood of neonates. Clin Exp Immunol 1997; 107: 435–439.

    Article  CAS  Google Scholar 

  36. Schutze GE, Hall MA, Baker CJ, Edwards MS . Role of neutrophil receptors in opsonophagocytosis of coagulase-negative Staphylococci. Infect Immun 1991; 59: 2573–2578.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shaio MF, Yang KD, Bohnsack JF, Hill HR . Effect of immune globulin intravenous on opsonization of bacteria by classic and alternative complement pathways in premature serum. Pediatr Res 1989; 25: 634–640.

    Article  CAS  Google Scholar 

  38. Fleer A, Gerards LJ, Aerts P, Westerdaal NA, Senders RC, van Dijk H et al. Opsonic defense to Staphylococcus epidermidis in the premature neonate. J Infect Dis 1985; 152: 930–937.

    Article  CAS  Google Scholar 

  39. Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD neonatal research network. Pediatrics 2002; 110: 285–291.

    Article  Google Scholar 

  40. Krediet TG, Beurskens FJ, van Dijk H, Gerards LJ, Fleer A . Antibody responses and opsonic activity in sera of preterm neonates with coagulase-negative staphylococcal septicemia and the effect of the administration of fresh frozen plasma. Pediatr Res 1998; 43: 645–651.

    Article  CAS  Google Scholar 

  41. Lassiter HA, Robinson TW, Brown MS, Hall DC, Hill HR, Christensen RD . Effect of intravenous immunoglobulin G on the deposition of immunoglobulin G and C3 onto type III group B streptococcus and Escherichia coli K1. J Perinatol 1996; 16: 346–351.

    CAS  PubMed  Google Scholar 

  42. Lassiter HA, Speranza MJ, Hall RT, Meade V, Christensen RD, Parker CJ . Complement C3 deposition onto bacteria by neonatal serum is not enhanced after the infusion of intravenous immunoglobulin. J Perinatol 1990; 10: 27–31.

    CAS  PubMed  Google Scholar 

  43. Correa AG, Baker CJ, Schutze GE, Edwards MS . Immunoglobulin G enhances C3 degradation on coagulase-negative staphylococci. Infect Immun 1994; 62: 2362–2366.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kohl S, Sigouroudinia M, Engleman EG . Adhesion defects of antibody-mediated target cell binding of neonatal natural killer cells. Pediatr Res 1999; 46: 755–759.

    Article  CAS  Google Scholar 

  45. Frazier JP, Kohl S, Pickering LK, Loo LS . The effect of route of delivery on neonatal natural killer cytotoxicity and antibody-dependent cellular cytotoxicity to herpes simplex virus-infected cells. Pediatr Res 1982; 16: 558–560.

    Article  CAS  Google Scholar 

  46. Hashimoto G, Wright PF, Karzon DT . Ability of human cord blood lymphocytes to mediate antibody-dependent cellular cytotoxicity against influenza virus-infected cells. Infect Immun 1983; 42: 214–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Stiehm ER, Roberts RL, Ank BJ, Plaeger-Marshall S, Salman N, Shen L et al. Comparison of cytotoxic properties of neonatal and adult neutrophils and monocytes and enhancement by cytokines. Clin Diagn Lab Immunol 1994; 1: 342–347.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kohl S, Frazier JP, Pickering LK, Loo LS . Normal function of neonatal polymorphonuclear leukocytes in antibody-dependent cellular-cytotoxicity to herpes simplex virus-infected cells. J Pediatr 1981; 98: 783–785.

    Article  CAS  Google Scholar 

  49. Nguyen QH, Roberts RL, Ank BJ, Lin SJ, Lau CK, Stiehm ER . Enhancement of antibody-dependent cellular cytotoxicity of neonatal cells by interleukin-2 (IL-2) and IL-12. Clin Diagn Lab Immunol 1998; 5: 98–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kohl S, Loo LS, Gonik B . Analysis in human neonates of defective antibody-dependent cellular cytotoxicity and natural killer cytotoxicity to herpes simplex virus-infected cells. J Infect Dis 1984; 150: 14–19.

    Article  CAS  Google Scholar 

  51. Jenkins M, Mills J, Kohl S . Natural killer cytotoxicity and antibody-dependent cellular cytotoxicity of human immunodeficiency virus-infected cells by leukocytes from human neonates and adults. Pediatr Res 1993; 33: 469–474.

    Article  CAS  Google Scholar 

  52. Shore SL, Milgrom H, Wood PA, Nahmias AJ . Antibody-dependent cellular cytotoxicity to target cells infected with herpes simplex viruses: functional adequacy in the neonate. Pediatrics 1977; 59: 22–28.

    CAS  PubMed  Google Scholar 

  53. Merrill JD, Sigaroudinia M, Kohl S . Characterization of natural killer and antibody-dependent cellular cytotoxicity of preterm infants against human immunodeficiency virus-infected cells. Pediatr Res 1996; 40: 498–503.

    Article  CAS  Google Scholar 

  54. Wright Jr WC, Ank BJ, Herbert J, Stiehm ER . Decreased bactericidal activity of leukocytes of stressed newborn infants. Pediatrics 1975; 56: 579–584.

    PubMed  Google Scholar 

  55. Shigeoka AO, Santos JI, Hill HR . Functional analysis of neutrophil granulocytes from healthy, infected, and stressed neonates. J Pediatr 1979; 95: 454–460.

    Article  CAS  Google Scholar 

  56. Drossou V, Kanakoudi F, Tzimouli V, Sarafidis K, Taparkou A, Bougiouklis D et al. Impact of prematurity, stress and sepsis on the neutrophil respiratory burst activity of neonates. Biol Neonate 1997; 72: 201–209.

    Article  CAS  Google Scholar 

  57. Harper TE, Christensen RD, Rothstein G, Hill HR . Effect of intravenous immunoglobulin G on neutrophil kinetics during experimental group B streptococcal infection in neonatal rats. Rev Infect Dis 1986; 8 (Suppl 4): S401–S408.

    Article  CAS  Google Scholar 

  58. Harper TE, Christensen RD, Rothstein G . The effect of administration of immunoglobulin to newborn rats with Escherichia coli sepsis and meningitis. Pediatr Res 1987; 22: 455–460.

    Article  CAS  Google Scholar 

  59. Christensen RD, Brown MS, Hall DC, Lassiter HA, Hill HR . Effect on neutrophil kinetics and serum opsonic capacity of intravenous administration of immune globulin to neonates with clinical signs of early-onset sepsis. J Pediatr 1991; 118: 606–614.

    Article  CAS  Google Scholar 

  60. Jackson SK, Parton J, Barnes RA, Poynton CH, Fegan C . Effect of IgM-enriched intravenous immunoglobulin (Pentaglobin) on endotoxaemia and anti-endotoxin antibodies in bone marrow transplantation. Eur J Clin Invest 1993; 23: 540–545.

    Article  CAS  Google Scholar 

  61. Ballow M . Clinical and investigational considerations for the use of IGIV therapy. Am J Health Syst Pharm 2005; 62: S12–S18; quiz S19-21.

    Article  CAS  Google Scholar 

  62. Watanabe M, Uchida K, Nakagaki K, Kanazawa H, Trapnell BC, Hoshino Y et al. Anti-cytokine autoantibodies are ubiquitous in healthy individuals. FEBS Lett 2007; 581: 2017–2021.

    Article  CAS  Google Scholar 

  63. Dembinski J, Martini R, Behrendt D, Bartmann P . Modification of cord blood IL-6 production with IgM enriched human immunoglobulin in term and preterm infants. Cytokine 2004; 26: 25–29.

    Article  CAS  Google Scholar 

  64. Sugita K, Hirao J, Arisaka O, Eguchi M . gamma-Globulin-induced modulation with necrotic-like morphology of peripheral blood neutrophils. Eur J Pharmacol 2005; 513: 141–144.

    Article  CAS  Google Scholar 

  65. Tarnow-Mordi W, Cust A, Brocklehurst P, Mohan P, Isaacs D . Polyclonal intravenous immunoglobulin to prevent brain injury in preterm infants. Lancet 2002; 359: 1522; author reply 1523-1524..

    Article  Google Scholar 

  66. Devlin LA, Lassiter HA . Immunoenhancement to prevent nosocomial coagulase-negative staphylococcal sepsis in very low-birth-weight infants. Clin Perinatol 2004; 31: 69–75.

    Article  Google Scholar 

  67. Capparelli EV, Bloom BT, Kueser TJ, Oelberg DG, Bifano EM, White RD et al. Multicenter study to determine antibody concentrations and assess the safety of administration of INH-A21, a donor-selected human Staphylococcal immune globulin, in low-birth-weight infants. Antimicrob Agents Chemother 2005; 49: 4121–4127.

    Article  CAS  Google Scholar 

  68. Benjamin Jr DK, Schelonka R, White R, Holley Jr HP, Bifano E, Cummings J et al. A blinded, randomized, multicenter study of an intravenous Staphylococcus aureus immune globulin. J Perinatol 2006; 26: 290.

    Article  CAS  Google Scholar 

  69. DeJonge M, Burchfield D, Bloom B, Duenas M, Walker W, Polak M et al. Clinical trial of safety and efficacy of INH-A21 for the prevention of nosocomial staphylococcal bloodstream infection in premature infants. J Pediatr 2007; 151: 260–265, 265 e261.

    Article  CAS  Google Scholar 

  70. Suri M, Harrison L, Van de Ven C, Cairo MS . Immunotherapy in the prophylaxis and treatment of neonatal sepsis. Curr Opin Pediatr 2003; 15: 155–160.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J L Wynn.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wynn, J., Seed, P. & Cotten, C. Does IVIg administration yield improved immune function in very premature neonates?. J Perinatol 30, 635–642 (2010). https://doi.org/10.1038/jp.2009.197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2009.197

Keywords

This article is cited by

Search

Quick links