Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Frequent chromosomal translocations induced by DNA double-strand breaks

Abstract

The faithful repair of DNA damage such as chromosomal double-strand breaks (DSBs) is crucial for genomic integrity. Aberrant repair of these lesions can result in chromosomal rearrangements, including translocations, which are associated with numerous tumours1,2. Models predict that some translocations arise from DSB-induced recombination in differentiating lymphoid cell types3,4,5 or from aberrant repair of DNA damage induced by irradiation or other agents6,7,8; however, a genetic system to study the aetiology of these events has been lacking. Here we use a mouse embryonic stem cell system to examine the role of DNA damage on the formation of translocations. We find that two DSBs, each on different chromosomes, are sufficient to promote frequent reciprocal translocations. The results are in striking contrast with interchromosomal repair of a single DSB in an analogous system in which translocations are not recovered. Thus, while interchromosomal DNA repair does not result in genome instability per se, the presence of two DSBs in a single cell can alter the spectrum of repair products that are recovered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Translocation substrates.
Figure 2: Analysis of neo+ clones.
Figure 3: Visualization of translocations by FISH using whole chromosome mouse chromosome14-FITC (green) and chromosome17-Cy3 (red) probes.

Similar content being viewed by others

References

  1. Rabbitts, T. H. Chromosomal translocations in human cancer. Nature 372, 143–149 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Mitelman, F., Mertens, F. & Johansson, B. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nature Genet. 15, 417–474 (1997).

    Article  CAS  Google Scholar 

  3. Tycko, B. & Sklar, J. Chromosomal translocations in lymphoid neoplasia: a reappraisal of the recombinase model. Cancer Cells 2, 1–8 (1990).

    CAS  PubMed  Google Scholar 

  4. Lewis, S. M. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Adv. Immunol. 56, 27–149 (1994).

    Article  CAS  Google Scholar 

  5. Hiom, K., Melek, M. & Gellert, M. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94, 463–470 (1998).

    Article  CAS  Google Scholar 

  6. Cornforth, M. N. & Bedford, J. S. Ionizing radiation damage and its early development in chromosomes. Adv. Radiat. Biol. 17, 423–496 (1993).

    Article  Google Scholar 

  7. Ikeda, H. DNA topoisomerase-mediated illegitimate recombination. Adv. Pharmacol. 29A, 147–165 (1994).

    Article  CAS  Google Scholar 

  8. Wang, P., Zhou, R., Zou, Y., Jackson-Cook, C. & Povirk, L. Highly conservative reciprocal translocations formed by apparent joining of exchanged DNA double-strand break ends. Proc. Natl Acad. Sci. USA 94, 12018–12023 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096–8106 (1994).

    Article  CAS  Google Scholar 

  10. Sargent, R. G., Brenneman, M. A. & Wilson, J. H. Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol. Cell. Biol. 17, 267–277 (1997).

    Article  CAS  Google Scholar 

  11. Liang, F., Han, M., Romanienko, P. J. & Jasin, M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc. Nat. Acad. Sci. USA 95, 5172–5177 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Kadyk, L. C. & Hartwell, L. H. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132, 387–402 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnson, R. D., Liu, N. & Jasin, M. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature 401, 397–399 (1999).

    ADS  CAS  PubMed  Google Scholar 

  14. Lin, F. L., Sperle, K. & Sternberg, N. Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol. Cell. Biol. 4, 1020–1034 (1984).

    Article  CAS  Google Scholar 

  15. Jeggo, P. A. DNA breakage and repair. Adv. Genet. 38, 185–218 (1998).

    Article  CAS  Google Scholar 

  16. Cooper, D. N., Krawczak, M. & Antonarkis, S. E. in The Genetic Basis of Human Cancer (eds Vogelstein, B. & Kinzler, K. W.) 65–94 (McGraw-Hill, New York, 1998).

    Google Scholar 

  17. Richardson, C., Moynahan, M. E. & Jasin, M. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 12, 3831–3842 (1998).

    Article  CAS  Google Scholar 

  18. Haber, J. E. & Leung, W. Y. Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proc. Natl Acad. Sci. USA 93, 13949–13954 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Chen, C. & Kolodner, R. D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nature Genet. 23, 8–85 (1999).

    Google Scholar 

  20. Gillert, E. et al. A DNA damage repair mechanism is involved in the origin of chromosomal translocations t(4;11) in primary leukemic cells. Oncogene 18, 4663–4671 (1999).

    Article  CAS  Google Scholar 

  21. Colleaux, L., d’Auriol, L., Gailbert, F. & Dujon, B. Recognition and cleavage site of the intron-encoded omega transposase. Proc. Natl Acad. Sci. 85, 6022–6026 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Jasin, M. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 12, 224–228 (1996).

    Article  CAS  Google Scholar 

  23. Beumer, K. J., Pimpinelli, S. & Golic, K. G. Induced chromosomal exchange directs the segregation of recombinant chromatids in mitosis of Drosophila. Genetics 150, 173–188 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Strout, M. P., Marcucci, G., Bloomfield, C. D. & Caligiuri, M. A. The partial tandem duplication of ALL1 (MLL) is consistently generated by Alu-mediated homologous recombination in acute myeloid leukemia. Proc. Natl Acad. Sci. USA 95, 2390–2395 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Andreasson, P. et al. Molecular characterization of jumping translocations reveals spatial and temporal breakpoint heterogeneity. Leukemia 12, 1411–1416 (1998).

    Article  CAS  Google Scholar 

  26. Xu, X. et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389–395 (1999).

    Article  CAS  Google Scholar 

  27. Coleman, A. E., Kovalchuk, A. L., Janz, S., Palini, A. & Ried, T. Jumping translocation breakpoint regions lead to amplification of rearranged myc. Blood 93, 4442–4444 (1999).

    CAS  PubMed  Google Scholar 

  28. Moynahan, M. E., Chiu, J. W., Koller, B. H. & Jasin, M. Brca1 controls homology-directed repair. Mol. Cell 4, 511–518 (1999).

    Article  CAS  Google Scholar 

  29. Moynahan, M. E. & Jasin, M. Loss of heterozygosity induced by a chromosomal double-strand break. Proc. Natl Acad. Sci. USA 94, 8988–8993 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hein te Riele (Amsterdam) for materials, D. Tabarini in the core sequencing facility, and K. Manova and S. Kerns in the core microscopy facility. C.R. is a recipient of the Vrushalli Ranadive Fellowship from the Leukemia and Lymphoma Society, formerly the Leukemia Society of America. This work was supported by a grant from the National Science Foundation to M.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Jasin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, C., Jasin, M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405, 697–700 (2000). https://doi.org/10.1038/35015097

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015097

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing