Skip to main content
Log in

Peak bone mass, bone loss and risk of fracture

  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Both peak bone mass and bone loss contribute to subsequent fracture risk. Other variables such as architectural abnormalities, microdamage, geometric properties, and trauma probably contribute as well. Until the contribution of these other potentially important risk factors can be quantified, it will be difficult to determine precisely the relative importance of peak bone mass and subsequent bone loss in the etiology of fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mazess RB. On aging bone loss. Clin Orthop 1982;165:239–52.

    Google Scholar 

  2. Hui SL, Slemenda CW, Johnston CC. Baseline measurement of bone mass predicts fracture in white women. Ann Intern Med 1989;111:355–61.

    Google Scholar 

  3. Wasnich RD, et al. Prediction of postmenopausal fracture risk with use of bone mineral measurements. Am J Obstet Gynecol 1985;153:745–51.

    Google Scholar 

  4. Cummings SR, Black DM, Nevitt MC, et al. Appendicular bone density and age predict hip fractures in women. JAMA 1990;263:665–8.

    Google Scholar 

  5. Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fractures. Lancet 1993;341:72–5.

    Google Scholar 

  6. Esses SI, Lotz JC, Hayes WC. Biomechanical properties of the proximal femur determined in vitro by single-energy quantitative computed tomography. J Bone Miner Res 1989;4:715.

    Google Scholar 

  7. Parfitt AM. Trabecular bone architecture in the pathogenesis and prevention of fracture. Am J Med 1987;82:68–72.

    Google Scholar 

  8. Mosekilde L. Age-related changes in vertebral trabecular bone architecture assessed by a new method. Bone 1988;9:247–50.

    Google Scholar 

  9. Recker RR. Architecture and vertebral fracture. Calcif Tissue Int 1993;53 (Suppl 1):S139–42.

    Google Scholar 

  10. Ross PD, Davis JW, Wasnich RD. Bone mass and beyond: risk factors for fractures. Calcif Tissue Int 1993;53 (Suppl 1):S134–8.

    Google Scholar 

  11. Christiansen C, Hansen MA, Overgaard K, Riis BJ. Prediction of future fracture risk. In: Proceedings of the Fourth International Symposium on Osteoporosis, Hong Kong, April 1993:52–4.

  12. Frost HM. Mechanical microdamage, bone remodeling, and osteoporosis: a review. In: Deluca HF, Frost HM, Jee WSS, et al., editors. Osteoporosis: recent advances in pathogenesis and treatment. Baltimore: University Park Press, 1981.

    Google Scholar 

  13. Burr DR. Remodeling and repair of fatigue damage. Calcif Tissue Int 1993;53 (Suppl 1):S75–81.

    Google Scholar 

  14. Parfitt MA. Bone age, mineral density, and fatigue damage. Calcif Tissue Int 1993;53 (Suppl 1):S82–6.

    Google Scholar 

  15. Faulkner KG, Glüer C-C, Palermo L, et al. Geometric measurements from dual x-ray absorptiometry scans predict hip fracture. J Bone Miner Res 1992;7:S98.

    Google Scholar 

  16. Faulkner KG, Cummings SR, Black D, Palermo L, Glüer C-C, Genant HK. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res 1993;8:1211–7.

    Google Scholar 

  17. Nakamura T, Yoshikawa T, Mizuno Y, et al. Do geometric properties of the femoral neck explain Japanese-American differences in hip fracture incidence? [Abstract], J Bone Miner Res 1993;8 (Suppl 1):S333.

    Google Scholar 

  18. Hayes WC, Myers ER, Morris JN, et al. Impact near the hip dominates fracture risk in elderly nursing home residents who fall. Calcif Tissue Int 1993;52:192–8.

    Google Scholar 

  19. Sandier RB, Slemenda CW, LaPorte RE, et al. Postmenopausal bone density and milk consumption in childhood and adolescence. Am J Clin Nutr 1985;42:270–4.

    Google Scholar 

  20. Hui SL, Slemenda CW, Johnston CC. The contribution of bone loss to postmenopausal osteoporosis. Osteoporosis Int 1990;1:30–4.

    Google Scholar 

  21. Gardsell P, Johnell O, Nilsson BE. The predictive value of bone loss for fragility fractures in women: a longitudinal study over 15 years. Calcif Tissue Int 1991;49:90–4.

    Google Scholar 

  22. Hanson MA, Overgaard K, Riis BJ, Christiansen C. Role of peak bone mass and bone loss in postmenopausal osteoporosis: 12 year study. BMJ1991;303:961–4.

    Google Scholar 

  23. Melton JL, Atkinson EJ, O'Fallon WM, Wahner HW, Riggs BL. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 1993;8:1227–33.

    Google Scholar 

  24. Lai K, Rencken M, Drinkwater B, Chesnut C. Site of bone density measurement may affect therapy decision. Calcif Tissue Int 1993;53:225–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, C.C., Slemenda, C.W. Peak bone mass, bone loss and risk of fracture. Osteoporosis Int 4 (Suppl 1), S43–S45 (1994). https://doi.org/10.1007/BF01623435

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01623435

Keywords

Navigation