Skip to main content
Log in

Molecular basis for the development of individual differences in the hypothalamic-pituitary-adrenal stress response

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Several years ago, investigators described the effects of infantile handling on the development of hypothalamic-pituitary-adrenal (HPA) responses to stress in the rat. Rat pups exposed to brief periods of innocuous handling early in life showed reduced HPA responses to a wide variety of stressors, and the effect persists throughout the life of the animal. These effects are robust and provide an excellent model for understanding how early environmental stimuli, which are external to the organism, alter neural differentiation and, thus, neuroendocrine responsivity to stress.

  2. 2.

    This paper reviews the endocrine mechanisms affected by early handling and our current understanding of the neural transduction of environmental events and their effects at the level of the target neurons (in the hippocampus and frontal cortex).

  3. 3.

    In brief, handling serves to increase glucocorticoid receptor gene transcription, increasing sensitivity to glucocorticoid negative feedback regulation and, thus, altering the activity within hypothalamic corticotropin-releasing factor/vasopressin neurons. Together these changes serve to determine neuroendocrine responsivity to stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ader, R., and Grota, L. J. (1969). Effects of early experience on adrenocortical reactivity.Physiol. Behav. 4303–305.

    Google Scholar 

  • Akana, S. F., Cascio, C. S., Du, J.-Z., Levin, N., and Dallman, M. F. (1986). Reset of feedback in the adrenocortical system: An apparent shift in sensitivity of adrenocorticotropin to inhibition by corticosterone between morning and evening.Endocrinology 1192325–2332.

    Google Scholar 

  • Akana, S. F., Jacobson, L., Cascio, C. S., Shinsako, J., and Dallman, M. F. (1988). Constant corticosterone replacement normalizes basal adrenocorticotropin (ACTH) but permits sustained ACTH hypersecretion stress in adrenalectomized rats.Endorcinology 1221337–1342.

    Google Scholar 

  • Antoni, F. A. (1986). Hypothalamic control of ACTH secretion: Advances since the discovery of 41-residue corticotropin-releasing factor.Endocr. Rev. 7351–370.

    Google Scholar 

  • Banker, G. A., and Cowan, W. M. (1977). Rat hippocampal neurons in dispersed cell culture.Brain Res. 126397–425.

    Google Scholar 

  • Beaumont, K., and Fanestil, D. D. (1983). Characterization of rat brain aldosterone receptors reveals high affinity for corticosterone.Endocrinology 1132043–2051.

    Google Scholar 

  • Bell, R. W., Nitschke, W., Gorry, T. H., and Zachman, T. A. (1971). Infantile stimulation and ultrasonic signaling: A possible mediator of early handing phenomena.Dev. Psychobiol. 4181–191.

    Google Scholar 

  • Beyer, H. S., Matta, S. G., and Sharp, B. M. (1988). Regulation of the messenger ribonucleic acid for corticotropin-releasing factor in the paraventricular nucleus and other brain sites of the rat.Endocrinology 1232117–2123.

    Google Scholar 

  • Bradbury, M., and Dallman, M. F. (1991). Effects of type 1 and type 2 glucocorticoid receptor antagonists on ACTH levels in the PM.Soc. Neurosci. Abstr. 19716.

    Google Scholar 

  • Brindley, D. N., and Rolland, Y. (1989). Possible connections between stress, diabetes, obesity, hypertension and altered lipoprotein metabolism that may result in atherosclerosis.Clin. Sci. 77453–461.

    Google Scholar 

  • Claustre, Y., Roquier, L., and Scatton, B. (1988).J. Pharmacol. Exp. Ther. 2441051–1056.

    Google Scholar 

  • Dallman, M. F., Akana, S., Cascio, C. S., Darlington, D. N., Jacobson, L., and Levin, N. (1987). Regulation of ACTH secretion: Variations on a theme of B.Rec. Prog. Horm. Res. 43113–173.

    Google Scholar 

  • Dallman, M. F., Levin, N., Cascio, C. S., Akana, S. F., Jacobson, L., and Kuhn, R. W. (1989). Pharmacological evidence that the diurnal regulation of adrenocorticotropin secretion by corticosteroids is mediated by type I B-preferring receptors.Endorcrinology 1242844–2850.

    Google Scholar 

  • Diorio, D., Viau, V., and Meaney, M. J. (1993). The role of the frontal cortex in the regulation of hypothalamic-pituitary-adrenal activity.J. Neuroscience (in press).

  • Emadian, S. M., Luttge, W. G., and Densmore, C. L. (1986). Chemical differentiation of Type I and Type II receptors for adrenal steroids in brain cytosol.J. Steroid Biochem. Mol. Biol. 24953–961.

    Google Scholar 

  • Evans, R. M., and Arriza, J. L. (1989). A molecular framework for the actions of glucocorticoid hormones in the nervous system.Neuron 21105–1112.

    Google Scholar 

  • Feldman, S., and Conforti, N. (1976). Feedback effects of dexamethasone on adrenocortical responses in rats with fornix lesions.Horm. Res. 756–60.

    Google Scholar 

  • Feldman, S., and Conforti, N. (1980). Participation of the dorsal hippocampus in the glucocorticoid negative-feedback effect on adrenocortical activity.Neuroendocrinology 3052–55.

    Google Scholar 

  • Fischette, C. T., Komisurak, B. R., Ediner, H. M., Feder, H. H., and Siegal, A. (1980). Differential fornix ablations and the circadian rhythmicity of adrenal corticosterone secretion.Brain Res. 195373–380.

    Google Scholar 

  • Funder, J. W., and Sheppard, K. (1987). Adrenocortical steroids and the brain.Annu. Rev. Physiol. 49397–412.

    Google Scholar 

  • Gibbs, D. M. (1986). Vasopressin and oxytocin. Hypothalamic modulators of the stress response.Psychoneuroendocrinology 11131–140.

    Google Scholar 

  • Goldman, L., Winget, C., Hollinshead, G., and Levine, S. (1978). Postweaning development of negative feedback in the pituitary-adrenal system of the rat.Neuroendocrinology 12199–211.

    Google Scholar 

  • Grota, L. J. (1975). Effects of early experience on the metabolism and production of corticosterone in rats.Dev. Psychobiol. 9211–215.

    Google Scholar 

  • Habener, J. (1990). Cyclic AMP response element binding proteins: A cornucopia of transcription factors.Mol. Endocrinol. 41087–1094.

    Google Scholar 

  • Harbuz, M. S., and Lightman, S. L. (1992). Stress and the hypothalamic-pituitary-adrenal axis, acute, chronic and imminological activation.J. Endocrinol. 134327–339.

    Google Scholar 

  • Hennessy, M. B., Vogt, J., and Levine, S. (1982). Strain of foster mother determines long-term effects of early handling: Evidence for maternal mediation.Pyshiol. Psychol. 10153–157.

    Google Scholar 

  • Herman, J. P., Schafer, M. K.-H., Young, E. A., Thompson, R., Douglass, J., Akil, H., and Watson, S. J. (1989). Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis.J. Neurosci. 93072–3082.

    Google Scholar 

  • Hess, J. L., Denenberg, V. H., Zarrow, M. X., and Pfeifer, W. D. (1960). Modification of the corticosterone response curve as a function of handling in infancy.Physiol. Behav. 4109–112.

    Google Scholar 

  • Hidaka, H., Inagaki, M., Kawamamoto, S., and Sasaki, Y. (1984). Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase A and protein kinase C.Biochemistry 235036–5041.

    Google Scholar 

  • Imagawa, M., Chiu, R., and Karin, M. (1987). Transcription factor AP-2 mediates induction by two different signal-transduction pathways: Protein kinase C and cAMP.Cell 51251–260.

    Google Scholar 

  • Jacobson, L., and Sapolsky, R. M. (1991). The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenal axis.Endocr. Rev. 12118–134.

    Google Scholar 

  • Jacobson, L., Akana, S., Cascio, C. S., Shinsako, J., and Dallman, M. F. (1988). Circadian variations in plasma B permit normal termination of adrenocorticotropin responses to stress.Endocrinology 1221343–1349.

    Google Scholar 

  • Jones, M. T., Gillham, B., Greenstein, B. D., Beckford, U., and Holmes, M. C. (1982). Feedback actions of adrenal steroid hormones. InCurrent Topics in Neuroendocrinology, Vol. 2 (D. Ganten and D. Pfaff, Eds.), Springer, New York, pp. 45–68.

    Google Scholar 

  • Keller-Wood, M., and Dallman, M. F. (1984). Corticosteroid inhibition of ACTH secretion.Endocr. Rev. 51–24.

    Google Scholar 

  • Kiss, J. Z., Mezey, E., and Skirboll, L. (1984). Corticotropin-releasing factor-immunoreactive neurons become vasopressin positive after adrenolactomy.Proc. Natl. Acad. Sci. USA 811854–1858.

    Google Scholar 

  • Kovacs, K. J., and Makara, G. B. (1988). B and dexamethosone act at different brain sites to inhibit adrenalectomy-induced adrenocorticotropin hypersection.Brain Res. 474205–210.

    Google Scholar 

  • LaRocque, S., O'Donnell, D., Gianoulakis, C., Seckl, J. R., and Meaney, M. J. (1992). Postnatal handling in the rat alters hippocampal glucocorticoid receptor gene expression.Soc. Neurosci. Abstr. 18479.

    Google Scholar 

  • Lee, M. H. S., and Williams, D. I. (1974). Changes in licking behavior of rat mother following handling of young.Anim. Behav. 22679–681.

    Google Scholar 

  • Lee, M. H. S., and Williams, D. I. (1975). Long term changes in nest condition and pup grouping following handling of rat litters.Dev. Psychobiol. 891–95.

    Google Scholar 

  • Levin, N., Shinsako, J., and Dallman, M. F. (1987). B acts on the brain to inhibit adrenalectomyinduced adrenocorticotropin secretion.Endocrinology 122694–701.

    Google Scholar 

  • Levine, S. (1957). Infantile experience and resistence to physiological stress.Science 126405–406.

    Google Scholar 

  • Levine, S. (1962). Plasma-free corticosteroid response to electric shock in rats stimulated in infancy.Science 135795–796.

    Google Scholar 

  • Levine, S. (1970). The pituitary-adrenal system and the developing brain.Prog. Brain Res. 3279–102.

    Google Scholar 

  • Levine, S., Haltmeyer, G. C., Karas, G. G., and Denenberg, V. H. (1967). Physiological and behavioral effects of infantile stimulation.Physiol. Behav. 255–63.

    Google Scholar 

  • Lightman, S. L., and Young, W. S., III (1987). Vasopressin, oxytocin, dynorphin, enkephalin, and corticotropin-releasing factor mRNA stimulation in the rat.J. Physiol. 39423–39.

    Google Scholar 

  • Linton, E. A., Tilders, F. J. H., Hodgkinson, S., Berkenbosch, F., Vermes, I., and Lowry, P. J. (1985). Stress-induced secretion of adrenocorticotropin in rats is inhibited by antisera to corticotropin-releasing factor and vasopressin.Endocrinology 116966–970.

    Google Scholar 

  • McEwen, B. S., DeKloet, E. R., and Rostene, W. H. (1986). Adrenal steroid receptors and actions in the nervous system.Physiol. Rev. 661121–1150.

    Google Scholar 

  • Meaney, M. J., and Aitken, D. H. (1985a). [3H]Dexamethasone binding in rat frontal cortex.Brain Res. 328176–180.

    Google Scholar 

  • Meaney, M. J., and Aitken, D. H. (1985b). The effects of early postnatal handling on the development of hippocampal glucocorticoid receptors: Temporal parameters.Dev. Brain. Res. 22301–304.

    Google Scholar 

  • Meaney, M. J., Aitken, D. H., Bodnoff, S. R., Iny, L. J., and Sapolsky, R. M. (1985a). The effects of postnatal handling on the development of the glucocorticoid receptor systems and stress recovery in the rat.Prog. Neuropsychopharm. Biol. Psychiat. 7731–734.

    Google Scholar 

  • Meaney, M. J., Aitken, D. H., Bodnoff, S. R., Iny, L. J., Tatarewicz, J. E., and Sapolsky, R. M. (1985b). Early, postnatal handling alters glucocorticoid receptor concentrations in selected brain regions.Behav. Neurosci. 99760–765.

    Google Scholar 

  • Meaney, M. J., Aitken, D. H., and Sapolsky, R. M. (1987). Thyroid hormones influence the development of hippocampal glucocorticoid receptors in the rat: A mechanism for the effects of postnatal handling on the development of the adrenocortical stress response.Neuroendocrinology 45278–283.

    Google Scholar 

  • Meaney, M. J., Viau, V., Bhatnagar, S., and Aitken, D. H. (1988a). Occupancy and translocation of hippocampal glucocorticoid receptors during and following stress.Brain Res. 445198–203.

    Google Scholar 

  • Meaney, M. J., Aitken, D. H., Bhatnagar, S., Van Berkel, C., and Sapolsky, R. M. (1988b). Postnatal handling attenuates neuroendocrine, anatomical, and cognitive impairments related to the aged hippocampus.Science 238766–768.

    Google Scholar 

  • Meaney, M. J., Aitken, D. H., Sharma, S., Viau, V., and Sarrieau, A. (1989). Postnatal handling increases hippocampal type II, glucocorticoid receptors and enhances adrenocortical negativefeedback efficacy in the rat.Neuroendocrinology 50597–604.

    Google Scholar 

  • Meaney, M. J., Aitken, D. H., Sharma, S., and Viau, V. (1992). Basal ACTH, corticosterone, and corticosterone-binding globulin levels over the diurnal cycle, and hippocampal type I and type II corticosteroid receptors in young and old, handled and nonhandled rats.Neuroendocrinology 55204–213.

    Google Scholar 

  • Meaney, M. J., Bodnoff, S. R., O'Donnell, D., Rowe, W., Sarrieau, A., Rose, G. M., Poirier, J., and Seckl, J. R. (1993a). Glucocorticoids as regulators of neuron survival and repair in the aged brain. In A. C. Cuello (Ed.),Resorative Neurology, Vol. 6, Elsevier, Amsterdam (in press).

    Google Scholar 

  • Meaney, M. J., O'Donnell, D., Viau, V., Bhatnagar, S., Sarrieau, A., Smythe, J. W., Shanks, N., and Walker, C.-D. (1993b). Corticosteroid receptors in rat brain and pituitary during development and hypothalamic-pituitary-adrenal (HPA) function. InReceptors and the Developing Nervous System (P. McLaughin and I. Zagon (Eds.), Chapman and Hall, London (in press).

    Google Scholar 

  • Merchenthaler, I., Vigh, S., Petrusz, P., and Schally, A. V. (1983). Tha paraventriculo-infundibular corticotropin-releasing factor (CRF) pathway as revealed by immunochemistry in long-term hypophysectomized or adrenalectomized rats.Regul. Peptides 5295–305.

    Google Scholar 

  • Mitchell, J. B., Iny, L. J., and Meaney, M. J. (1990a). The role of serotonin in the development and environmental regulation of hippocampal type II corticosteroid receptors. Developmental Brain Res.55231–235.

    Google Scholar 

  • Mitchell, J. B., Rowe, W., Boksa, P., and Meaney, M. J. (1990b). Serotonin regulates type II corticosteroid receptor binding in hippocampal cell cultures.J. Neurosci. 101745–1752.

    Google Scholar 

  • Mitchell, J. B., Betito, K., Rowe, W., Boksa, P., and Meaney, M. J. (1993). Serotonergic regulation of type II corticosteroid receptor binding in cultured hippocampal cells: The role of serotonininduced increases in cAMP levels.Neuroscience (in press).

  • Montminy, M. R., Gonzalez, G. A., and Yamamoto, K. K. (1990). Regulation of cAMP-inducible genes by CREB.Trends Neurosci., 184-188.

  • Munck, A., Guyre, P. M., and Holbrook, N. J. (1984). Physiological functions of glucocorticoids in stress and their relations to pharmacological actions.Endocr. Rev. 525–44.

    Google Scholar 

  • Nakane, T., Aughya, T., Kanie, N., and Hollander, C. S. (1985). Evidence for the role of endogenous corticotropin-releasing factor in cold, ether, immobilization, and a traumatic stress.Proc. Natl. Acad. Sci. USA,821247–1251.

    Google Scholar 

  • Olpe, H. R., and McEwen, B. S. (1976). Glucocorticoid binding to receptor-like proteins in rat brain and pituitary: Ontogenetic and experimentally-induced changes.Brain Res. 105121–128.

    Google Scholar 

  • Partridge, W. M., Sakiyama, R., and Judd, H. L. (1983). Protein-bound corticosterone in human serum is selectively transported into rat brain and liver in vivo.J. Clin. Endocrinol. Metabol. 57160–166.

    Google Scholar 

  • Plotsky, P. M. (1987). Regulation of hypophysiotropic factors mediating ACTH secretion.Ann. N.Y. Acad. Sci. 512205–217.

    Google Scholar 

  • Plotsky, P. M., and Meaney, M. J. (1993). Effects of early environment on hypothalamic corticotropin-releasing factor mRNA, content and stress-induced release.Mol. Brain Res. (in press).

  • Plotsky, P. M., and Vale, W. W. (1984). Hemorrhage-induced secretion of corticotropin-releasing factor-like immunoreactivity into the rat hypophysial portal circulation and its inhibition by glucocorticoids.Endorcinology 114164–169.

    Google Scholar 

  • Plotsky, P. M., and Sawchenko, P. E. (1987). Hypophysial plasma portal levels, median eminence content, and immunohistochemical staining of corticotropin-releasing factor, arginine vasopressin, and oxytocin and pharmacological adrenalectomy.Endocrinology 1201361–1369.

    Google Scholar 

  • Plotsky, P. M., Otto, S., and Sapolsky, R. M. (1987). Inhibition of immunoreactive corticotropinreleasing factor into the hypophysial-portal circulation by delayed glucocorticoid feedback.Endorcinology 1191126–1130.

    Google Scholar 

  • Ratka, A., Sutanto, W., Bloemers, M., and De Kloet, E. R. (1989). On the role of brain mineralocorticoid (type I) and glucocorticoid (type II) receptors in neuroendocrine regulation.Neuroendocrinology 50117–123.

    Google Scholar 

  • Reul, J. H. M., and DeKloet, E. R. (1985). Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation.Endocrinology 1172505–2511.

    Google Scholar 

  • Reul, J. M. H. M., and De Kloet, E. R. (1986). Anatomical resolution of two types of corticosterone receptor site in the rat brain with in vitro autoradiography and computerized image analysis.J. Steroid Biochem. Mol. Biol. 24269–272.

    Google Scholar 

  • Reul, J. M. H. M., van den Bosch, F. R., and DeKloet, E. R. (1987). Relative occupation of type-I and type-II corticosteroid receptors in rat brain following stress and dexamethasone treatment Functional implications.J. Endocrinol. 115459–467.

    Google Scholar 

  • Rivier, C., and Vale, W. W. (1983). Effects of angiotensin II on ACTH release in vivo: Role of corticotropin-releasing factor (CRF).Regul. Peptides 7253–258.

    Google Scholar 

  • River, C., and Plotsky, P. M. (1986). Mediation by corticotropin-releasing factor of adenohypophysial hormone secretion.Annu. Rev. Physiol. 48475–489.

    Google Scholar 

  • Rivier, C., Brownstein, M., Spiess, J., Rivier, J., and Vale, W. W. (1982). In vivo corticotropinreleasing factor-induced secretion of adrenocorticotropin,β-endorphin, and corticosterone.Endocrinology 110272–278.

    Google Scholar 

  • Roesler, W. J., Vandenbark, G. R., and Hanson, R. W. (1988). Cyclic AMP and the induction of eukaryotic gene transcription.J. Biol. Chem. 2639063–9066.

    Google Scholar 

  • Rosenfeld, P., Sutanto, W., Levine, S., and De Kloet, E. R. (1988a). Ontogeny of type I and type II corticosteroid receptors in the rat hippocampus.Dev. Brain Res. 42113–138.

    Google Scholar 

  • Rosenfeld, P., Van Eekelen, J. A. M., Levine, S., And DeKloet, E. R. (1988b). Ontogeny of the type 2 glucocorticoid receptor in discrete rat brain regions: An immunocytochemical study.Dev. Brain Res. 42119–127.

    Google Scholar 

  • Sapolsky, R. M. (1990). Glucocorticoids, hippocampal damage and the glutaminergic synapse.Prog. Brain Res. 8613–23.

    Google Scholar 

  • Sapolsky, R. M., and Meaney, M. J. (1986). The maturation of the adrenocortical stress response in the rat.Brain Res. Rev. 1165–76.

    Google Scholar 

  • Sapolsky, R. M., Krey, L. C., and McEwen, B. S. (1984a). Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response.Proc. Natl. Acad. Sci. USA 816174–6177.

    Google Scholar 

  • Sapolsky, R. M., Krey, L. C., and McEwen, B. S. (1984b). Stress down-regulated corticosterone receptors in a site-specific manner.Endocrinology 114287–292.

    Google Scholar 

  • Sapolsky, R. M., Krey, L. C., and McEwen, B. S. (1986). The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis.Endocr. Rev. 7284–301.

    Google Scholar 

  • Sapolsky, R. M., Armanini, M. P., Packan, D. R., Sutton, S. W., and Plotsky, P. M. (1990). Glucocorticoid feedback inhibition of adrenocorticotropic hormone secretagogue release. Relationship to corticosteroid receptor occupancy in various limbic sites.Neuroendocrinology 51328–336.

    Google Scholar 

  • Sarrieau, A., Sharma, S., and Meaney, M. J. (1988). Postnatal development and environmental regulation of hippocampal glucocorticoid and mineralocorticoid receptors in the rat.Dev. Brain Res. 43158–162.

    Google Scholar 

  • Savard, P., Merand, Y., Di Paolo, T., and Dupont, A. (1984). Thyroid hormone regulation of serotonin metabolism in developing rat brain.Brain Res. 29299–108.

    Google Scholar 

  • Seckl, J. R., Dickson, K. L., and Fink, G. (1990). Central 5,7-dihydroxytryptamine lesions decrease hippocampal glucocorticoid and mineralocorticoid receptor messenger ribonucleic acid expression.J. Neuroenocrinol. 2911–916.

    Google Scholar 

  • Selye, H. (1950).The Physiology and Pathology of Exposure to Stress. Acta, Montreal.

    Google Scholar 

  • Sheppard, K. E., and Funder, J. W. (1987). Equivalent affinity of aldosterone and corticosterone for type I receptors in kidney and hippocampus: Direct binding studies.J. Steroid Biochem. Mol. Biol. 28737–742.

    Google Scholar 

  • Smotherman, W. P., Wiener, S. G., Mendoza, S. P., and Levine, S. (1977). Maternal pituitaryadrenal responsiveness as a function of differential treatment of rat pups.Dev. Psychobiol. 10113–122.

    Google Scholar 

  • Smythe, J. W., Rowe, W., and Meaney, M. J. (1991). The effects of neonatal handling on serotonin turnover and receptor binding.Soc. Neurosci. Abstr. 17990.

    Google Scholar 

  • Swanson, L. W., and Simmons, D. M. (1989). Differential steroid hormone and neural influences on peptide mRNA levels in CRH cells of the paraventricular nucleus: A hybridization histochemical study in the rat.J. Comp. Neurol.,285413–435.

    Google Scholar 

  • Swanson, L. W., Sawchenko, P. E., Lind, R. W., and Rho, J. H. (1983). The CRH motoneuron: Differential peptide regulation in neurons with possible synaptic, paracrine, and endocrine outputs.Ann. N.Y. Acad. Sci. 51212–23.

    Google Scholar 

  • Titeler, M., Lyon, R. A., Davis, K. H., and Glennon, R. A. (1987). Selectivity of serotoninergic drugs for multiple brain serotonin receptors.Biochem. Pharmacol. 363265–3271.

    Google Scholar 

  • Tornello, S., Orti, E., DeNicola, A. F., Rainbow, T. C., and McEwen, B. S. (1982). Regulation of glucocorticoid receptors in brain by corticosterone treatment of adrenalectomized rats.Neuroendocrinology 35411–417.

    Google Scholar 

  • Van Loon, G. R., and DeSousa, E. B. (1987). Regulation of stress-induced secretion of POMC-derived peptides.Ann. N.Y. Acad. Sci. 512300–307.

    Google Scholar 

  • Viau, V., Sharma, S., Plotsky, p. M., and Meaney, M. J. (1993). Increased plasma ACTH responses to stress in nonhandled compared with handled rats require basal corticosterone levels and are associated with increased levels of ACTH secretagogues in the median eminence.J. Neurosci. (in press).

  • Wilson, M., Greer, M., and Roberts, L. (1980). Hippocampal inhibition of pituitary-adrenocortical function in female rats.Brain Res. 197344–351.

    Google Scholar 

  • Wolfson, B., Manning, R. W., Davis, L. G., Arentzen, R., and Baldrino, F. (1985). Co-localization of corticotropin-releasing factor and vasopressin mRNA in neurones after adrenalectomy.Nature 31559–61.

    Google Scholar 

  • Yoshimasa, T., Sibley, D. R., Bouvier, M., Lefkowitz, R. J., and Caron, M. G. (1987). Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation.Nature 32767–70.

    Google Scholar 

  • Young, W. S., III, Mezey, E., and Siegel, R. E. (1986). Quantitative in situ hybridization histochemistry reveals increased corticotropin-releasing factor mRNA after adrenalectomy in rats.Neurosci. Lett. 70198–203.

    Google Scholar 

  • Zarrow, M. X., Campbell, P. S., and Denenberg, V. H. (1972). Handling in infancy: Increased levels of the hypothalamic corticotropin releasing factor (CRF) following exposure to a novel situation.Proc. Soc. Exp. Biol. Med. 356141–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meaney, M.J., Bhatnagar, S., Diorio, J. et al. Molecular basis for the development of individual differences in the hypothalamic-pituitary-adrenal stress response. Cell Mol Neurobiol 13, 321–347 (1993). https://doi.org/10.1007/BF00711576

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711576

Key words

Navigation