Skip to main content
Log in

Prenatal and neonatal drug metabolism in man

  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

Drug oxidations are catalyzed by the liver microsomal fraction of human fetuses but not by fetal livers from most experimental animals. In contrast, glucuronidation of some substrates is catalyzed by the rat fetal liver in late gestation but not in the human fetal liver. The deficient human fetal glucuronidation seems to be compensated for by early development of sulfation activity. The inconsistency of the results from animal fetuses and human fetuses shows that animal data have little relevance for the human fetus. No generalized statements can be made about drug disposition in the newborn infant as compared to adults. Although most drugs that are oxidized have prolonged plasma half-lives in the neonatal period there are examples of drugs with half-lives similar to, or even shorter than, the average half-lives in adults. Oxazepam is conjugated with glucuronic acid in adults. The neonatal plasma half-life of this drug is considerably prolonged. This is true also for its conjugate as would be expected from the immature renal function in newborns. Adequate pharmacokinetic information is a prerequisite for rational and safe drug treatment in the neonatal period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ackermann E, Rane A, Ericsson JLE (1972) The liver microsomal monooxygenase system in the human fetus: Distribution in different centrifugal fractions. Clin Pharmacol Ther 13: 652–662

    Google Scholar 

  • Aranda JV, Sitar DS, Parsons WD, Loughnan PM, Neims AH (1976) Pharmacokinetic aspects of theophylline in premature newborns. N Engl J Med295: 413–416

    Google Scholar 

  • Beckett AH, Taylor JF (1967) Blood concentration of pethidine and pentazocine in mother and infant at birth. J Pharm Pharmacol 19: (Suppl), 50S-52S

    Google Scholar 

  • Boréus LO, Belfrage P, Wallin A, Raabe N, Hartwig P (1978) Placental transfer of pethidine and norpethidine in the newborn infant. Abstract 2563, 7th International Congress of Pharmacology, Paris

  • Brackbill Y, Kane J, Manniello RL, Abramson D (1974) Obstetric premedication and infant outcome. Am J Obstet Gynecol 118: 377–384

    Google Scholar 

  • Caldwell J, Mofatt JR, Smith RL, Liebermann BA, Cawston MO, Beard RW (1976) Pharmacokinetics of bupivacaine administered epidurally during childbirth. Br J Clin Pharmacol 3: 956P-957P

    Google Scholar 

  • Caldwell J, Wakile LA, Notarianni LJ, Smith RL, Correy GJ, Lieberman BA, Beard RW, Finnie MDA Snedden W (1978) Maternal and neonatal disposition of pethidine in childbirth — a study using quantitative gas chromatography mass spectrometry. Life Sci 22: 589–596

    Google Scholar 

  • Drayer DE (1976) Pharmacologically active drug metabolites: therapeutic and toxic activities, plasma and urine data in man, accumulation in renal failure. Clin Pharmacokinet 1: 426–443

    Google Scholar 

  • Dvorchik BH Hepatic drug metabolism in the fetal stumptailed monkey (Macaca arctoides) In: Neubert D, Merker HJ, Nau H, Langman J (eds) Role of pharmacokinetics in prenatal and perinatal toxicology. Georg Thieme, Stuttgart, pp 275–287

  • Dvorchik BH, Stenger VG, Quattropani SL (1974) Fetal hepatic drug metabolism in the nonhuman primate,Macaca arctoides. Drug Metab Dispos 2: 539–544

    Google Scholar 

  • Fouts JR, Adamson RH (1959) Drug metabolism in the newborn rabbit, Science 129: 897–898

    Google Scholar 

  • Garrettson LK, Procknal JA Levy G (1975) Fetal acquisition and neonatal elimination of a large amount of salicylate. Clin Pharmacol Ther 17: 98–103

    Google Scholar 

  • Gladtke E (1968) Pharmacokinetics studies on phenylbutazone in children, Farmaco [Sci] 23: 897–906

    Google Scholar 

  • Gram LF, Fredricson-Overø K (1976) First-pass metabolism of nortriptyline in man. Clin Pharmacol Ther 18: 305–314

    Google Scholar 

  • Hirvonen T (1966) Fetal and postnatal development of glucuronide formation in mammalian tissue slices. Sarja-Series A II, Biologica-Geographica, Turku

    Google Scholar 

  • Howie D, Adriaenssens PI, Prescott LF (1977) Paracetamol metabolism following overdosage: application of high performance liquid chromatography. J Pharm Pharmacol 29: 235–237

    Google Scholar 

  • Jondorf WR, Maickel RT, Brodie BB (1958) Inability of newborn mice and guinea pigs to metabolize drugs. Biochem Pharmacol 1: 352–354

    Google Scholar 

  • Krauer B, Draffan GH, Williams FM, Clare RA, Dollery CT, Hawkins DF (1973) Elimination kinetics of amobarbital in mothers and their newborn infants. Clin Pharmacol Ther 14: 442–447

    Google Scholar 

  • Kuhnert BR, Kuhnert PM, Tu A-SL, Lin DCK, Foltz RL (1979a) Meperidine and normeperidine levels following meperidine administration during labor. I. Mother. Am J Obstet Gynecol 133: 904–908

    Google Scholar 

  • Kuhnert BR, Kuhnert PM, Tu A-SL, Lin DCK (1979b) Meperidine and normeperidine levels following meperidine administration during labor. II. Fetus and neonate. Am J Obstet Gynecol 133: 909–914

    Google Scholar 

  • Levy G, Khanna NN, Soda DM, Tsuzuki O, Stern L (1975) Pharmacokinetics of acetaminophen in the human neonate: Formation of acetaminophen glucuronide and sulfate in relation to plasma bilirubin concentration and D-glucaric acid excretion. Pediatrics 55: 818–825

    Google Scholar 

  • Mitchell JR, Jollow DJ, Potter WZ, Davis DC, Gillette JR, Brodie BB (1973) Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther 187: 185–194

    Google Scholar 

  • Miller RP, Roberts RJ, Fischer LJ (1976) Acetaminophen elimination kinetics in neonates, children, and adults. Clin Pharmacol Ther 19: 284–294

    Google Scholar 

  • Morgan D, Moore G, Thomas J, Triggs E (1978) Disposition of meperidine in pregnancy. Clin Pharmacol Ther 23: 288–295

    Google Scholar 

  • Morrison JC, Wiser WL, Rosser SI, Gayden JO, Bucovaz ET, Whybrew WD, Fish SA (1973) Metabolites of meperidine related to fetal depression. Am J Obstet Gynecol 115: 1132–1137

    Google Scholar 

  • Moore J, McNabb TG Glinn JB (1973) The placental transfer of pentazocine and pethidine. Br J Anaesth 45: (Suppl) 798–801

    Google Scholar 

  • Moore RG, Thomas J, Triggs EJ, Thomas DB, Burnard ED Shanks CA (1978) The pharmacokinetics and metabolism of the anilide local anaesthetics in neonates. III. Mepivacaine. Eur J Clin Pharmacol 14: 203–212

    Google Scholar 

  • Morselli PL, Principi N, Tognoni G, Reali E, Belvedere G, Standen SM, Sereni F (1973) Diazepam elimination in premature and full-term infants and children. J Perinat Med 1: 133–141

    Google Scholar 

  • Nitowsky HM, Matz L, Berzofsky JA (1966) Studies on oxidative drug metabolism in the full-term newborn infant. J Pediatr 69: 1139–1149

    Google Scholar 

  • Pacifici GM, Säwe J, Kager L, Rane A (1980) Morphine glucuronidation in human fetal and adult liver (in preparation)

  • Pelkonen O, Kärki NT (1973) Drug metabolism in human fetal tissues. Life Sci 13: 1163–1180

    Google Scholar 

  • Prescott LF, Wright N, Roscoe P, Brown SS (1971) Plasma-paracetamol half-life and hepatic necrosis in patients with paracetamol overdosage. Lancet 1: 519–522

    Google Scholar 

  • Rane A (1973) Drug metabolism in the human fetus and newborn infant. Acad. Thesis. Karolinska Institutet, Stockholm

    Google Scholar 

  • Rane A, Ackermann E (1972) Metabolism of ethylmorphine and aniline in human fetal liver. Clin Pharmacol Ther 13: 663–670

    Google Scholar 

  • Rane A, Sjöqvist F, Orrenius S (1973) Drugs and fetal metabolism. Clin Pharmacol Ther 14: 662–672

    Google Scholar 

  • Rane A, Garle M, Borgå O, Sjöqvist F (1974) Plasma disappearance of transplacentally transferred diphenylhydantoin in the newborn studied by mass fragmentography. Clin Pharmacol Ther 15: 39–45

    Google Scholar 

  • Rane A, Bertilsson L, Palmér L (1975) Disposition of placentally transferred carbamazepine (Tegretol®) in the newborn. Eur J Clin Pharmacol 8: 283–284

    Google Scholar 

  • Rane A, Sundwall A, Tomson G (1978) Oxidative and synthetic drug-metabolic pathways in the newborn infant. Studies on the neonatal kinetics of oxazepam. In: Neubert D, Merker HJ, Nau H, Langman J (eds): Role of Pharmacokinetics in Prenatal and Perinatal Toxicology. George Thieme, Stuttgart, pp 183–191

    Google Scholar 

  • Reinicke C, Rogner G, Frenzel J, Maak B, Klinger W (1970) Die Wirkung von Phenylbutazon und Phenobarbital auf die Amidopyrin-Elimination, die Bilirubin-Gesamtkonzentration im Serum und einige Blutgerinnungsfaktoren bei neugeborenen Kindern. Pharmacol Clin 2: 167–172

    Google Scholar 

  • Rollins DE, von Bahr C, Glaumann H, Moldéus P, Rane A (1979) Acetaminophen: Potentially toxic metabolite formed by human fetal and adult liver microsomes and isolated fetal liver cells. Science 205: 1414–1416

    Google Scholar 

  • Shnider SM, Moya F (1964) Effects of meperidine on the newborn infant. Am J Obstet Gynecol 89: 1009–1015

    Google Scholar 

  • Short CR, Davis LE (1970) Perinatal development of drug-metabolizing enzyme activity in swine. J Pharmacol Exp Ther 174: 185–196

    Google Scholar 

  • Sjöqvist F, Bergfors PG, Borgå O, Lind M, Ygge H (1972) Plasma disappearance of nortriptyline in a newborn infant following placental transfer from an intoxicated mother: Evidence for drug metabolism. J Pediatr 80: 496–500

    Google Scholar 

  • Steiner E, von Bahr C, Rane A (1980) Sulfate and glucuronic acid conjugation of harmol in human fetal and adult liver tissue. (in preparation)

  • Szeto HH, Zervoudakis IA, Cederqvist LL, Inturrisi CE (1978) Amniotic fluid transfer of meperidine from maternal plasma in early pregnancy. Obstet Gynecol 52: 59–62

    Google Scholar 

  • Tomson G, Garle M, Nisell H, Nylund L, Rane A, Thalme B (1980) Maternal kinetics and transplancental passage of pethidine during labour (in preparation)

  • Tomson G, Lunell N-O, Sundwall A, Rane A (1979) Placental passage of oxazepam and its metabolism in mother and newborn. Clin Pharmacol Ther 25: 74–81

    Google Scholar 

  • Traeger A, Nöschel H, Zaumseil J (1973) Zur Pharmakokinetik von Indomethazin bei Schwangeren, Kreissenden und deren Neugeborenen. Zentralbl Gynaekol 95: 635–641

    Google Scholar 

  • Vest MF, Streiff RR (1959) Studies on glucuronide formation in newborn infants and older children. AMA J Dis Child 98: 688–693

    Google Scholar 

  • Weiss CF, Glazko AJ, Weston JK (1960) Chloramphenicol in the newborn infant. A physiologic explanation of its toxicity when given in excessive dose. N Engl J Med 262: 787–794

    Google Scholar 

  • Wengle B (1964) Studies on ester sulphates. On sulphate conjugation in foetal human tissue extracts. Acta Soc Med Upsal 69: 105–124

    Google Scholar 

  • Wilkinson GR, Shand DG (1975) A physiological approach to hepatic drug clearance. Clin Pharmacol Ther 18: 377–390

    Google Scholar 

  • Wishart GJ, Dutton GJ (1978) Induction by natural and xenobiotic compounds of UDP-Glucuronyl-transferase activities during the perinatal period. In: Neubert D, Merker HJ, Nau H, Langman J (eds) Role of pharmacokinetics in prenatal and perinatal toxicology. George Thieme, Stuttgart, pp 215–224

    Google Scholar 

  • Yaffe SJ, Rane A, Sjöqvist F, Boréus L-O, Orrenius S (1970) The presence of a monooxygenase system in human fetal liver microsomes. Life Sci 9: 1189–1200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rane, A., Tomson, G. Prenatal and neonatal drug metabolism in man. Eur J Clin Pharmacol 18, 9–15 (1980). https://doi.org/10.1007/BF00561473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00561473

Key words

Navigation