Skip to main content

Analysis of the Protein-Coding Content of the Sequence of Human Cytomegalovirus Strain AD169

  • Conference paper

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 154))

Abstract

Large-scale sequence analysis of the AD169 strain of human cytomegalovirus (HCMV) began in this laboratory in 1984 when very little was known about the sequence or location of genetic information in the viral genome. At that time sequence analysis was confined to the major immediate-early gene (Stenberg et al. 1984), a region of the Colburn strain that contained CA tracts (Jeang and Hayward 1983), the L-S junction region (Tamashiro et al. 1984), and what has been termed the transforming region (Kouzarides et al. 1983). This chapter is being written in March 1989 when the sequence is complete except for some remaining polishing of certain areas which is still going on (manuscript in preparation). As far as we know there are no major discrepancies in the data which might lead to the sequence changing although of course this cannot be ruled out. We present a preliminary analysis of the HCMV genome and limit ourselves mainly to the potential protein-coding content of over 200 reading frames.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addison C, Rixon FJ, Palfreyman JW, O’Hara M, Preston VG (1984) Characterisation of a herpes simplex virus type 1 mutant which has a temperature-sensitive defect in penetration of cells and assembly of capsids. Virology 138: 246–259.

    PubMed  CAS  Google Scholar 

  • Akrigg A, Wilkinson GWG, Oram JD (1985) The structure of the major immediate early gene of human cytomegalovirus strain AD169. Virus Res 2: 107–121.

    PubMed  CAS  Google Scholar 

  • Anders DG, Gibson W (1988) Location, transcript analysis, and partial nucleotide sequence of the cytomegalovirus gene encoding an early DNA-binding protein with similarities to ICP8 of herpes simplex virus type 1. J Virol 62: 1364–1372.

    PubMed  CAS  Google Scholar 

  • Avertt DR, Lubbers C, Elion GB, Spector T (1983) Ribonucleotide reductase induced by herpes simplex virus type 1. Characterisation of a distinct enzyme. J Biol Chem 258: 9831–9838.

    Google Scholar 

  • Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, et al. (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310: 207–211.

    PubMed  CAS  Google Scholar 

  • Bairoch A (1988) Swiss-Prot protein sequence data bank release 8.0. Department de Biochimie Medicale, Centre Medical Universitaire, Geneva.

    Google Scholar 

  • Bankier AT, Barrell BG (1989) Sequencing single strand DNA using the chain termination method. In: Ward S, Howe C (eds) Nucleic acids sequencing: a practical approach. IRL, Oxford (in press).

    Google Scholar 

  • Bankier AT, Weston KM, Barrell BG (1988) Random cloning and sequencing by the M13/dideoxynucleotide chain termination method. Methods Enzymol 155: 51–93.

    Google Scholar 

  • Batterson W, Furlong D, Roizman B (1983) Molecular genetics of herpes simplex virus VIII. Further characterization of a temperature-sensitive mutant defective in release of viral DNA and in other stages of the viral reproductive cycle. J Virol 45: 397–407.

    PubMed  CAS  Google Scholar 

  • Beck S, Barrell BG (1988) Human cytomegalovirus encodes a glycoprotein homologous to MHC class-I antigens. Nature 331: 269–272.

    PubMed  CAS  Google Scholar 

  • Benko DM, Haltiwanger RS, Hart GW, Gibson W (1988) Virion basic phosphoprotein from human cytomegalovirus contains O-linked N-acetyl glucosamine. Proc Natl Acad Sci USA 85: 2573–2577.

    PubMed  CAS  Google Scholar 

  • Biron KK, Fyfe JA, Stanat SC, Leslie LK, Sorrell JB, Lambe CU, Coen DM (1986) A human cytomegalovirus mutant resistant to the nucleoside analog 9-[2-hydroxy-l-(hydroxymethyl)ethoxy]methyl guanine (BW B759U) induces reduced levels of BW B759U triphosphate. Proc Natl Acad Sci USA 83: 8769–8773.

    PubMed  CAS  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987a) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329: 506–512.

    PubMed  CAS  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987b) The foreign antigen binding site and T-cell recognition regions of class I histocompatibility antigens. Nature 329: 512–518.

    PubMed  CAS  Google Scholar 

  • Borst J, van de Griend RJ, van Oostveen JW, Ang S-L, Melief CJ, Scidman JG, Bolhuis RLH (1987) A T-cell receptor γ/CD3 complex found on cloned functional lymphocytes. Nature 325: 683–688.

    PubMed  CAS  Google Scholar 

  • Boshart M, Weber F, Jahn G, Dorsch-Hasler K, Fleckenstein B, Schaffner W (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41: 521–530.

    PubMed  CAS  Google Scholar 

  • Brenner S (1987) Phosphotransferase sequence homology. Nature 329: 21.

    PubMed  CAS  Google Scholar 

  • Brenner MB, McLean J, Scheft H, Riberdy J, Ang S-L, Scidman JG, Devlin P, Krangel MS (1987) Two forms of the T-cell receptor γprotein found on peripheral blood cytotoxic T lymphocytes. Nature 325: 689–694.

    PubMed  CAS  Google Scholar 

  • Chang C-P, Vesole DH, Nelson J, Oldstone MBA, Stinski MF (1989a) Identification and expression of a human cytomegalovirus early glycoprotein. J Virol 63: 3330–3337.

    PubMed  CAS  Google Scholar 

  • Chang C-P, Malone CL, Stinski MF (1989b) A human cytomegalovirus early gene has three inducible promoters that are regulated differentially at various times after infection. J Virol 63: 281–290.

    PubMed  CAS  Google Scholar 

  • Chee MS, Lawrence GL, Barrell BG (1989a) Alpha-, beta-, and gammaherpesviruses encode a putative phosphotransferase. J Gen Virol 70 (in press).

    Google Scholar 

  • Chee MS, Rudolph S-A, Plachter B, Barrell BG, Jahn G (1989b) Identification of the major capsid protein gene of human cytomegalovirus. J Virol 63: 1345–1353.

    PubMed  CAS  Google Scholar 

  • Chee MS, Satchwell SC, Preddie E, Weston KM, Barrell BG. Human cytomegalovirus encodes three G-protein coupled receptor homologues. Submitted for publication.

    Google Scholar 

  • Cherrington JM, Mocarski ES (1989) Human cytomegalovirus ie1 transactivates the α promoter-enhancer via an 18-base-pair repeat element. J Virol 63: 1435–1440.

    PubMed  CAS  Google Scholar 

  • Chou J, Roizman B (1989) Characterization of DNA sequence-common and sequence-specific proteins binding to cis-acting sites for cleavage of the terminal a sequence of the herpes simplex virus 1 genome. J Virol 63: 1059–1068.

    PubMed  CAS  Google Scholar 

  • Clark BR, Zaia JA, Balce-Directo L, Ting Y-P (1984) Isolation and partial chemical characterization of a 64,000-dalton glycoprotein of human cytomegalovirus. J Virol 49: 279–282.

    PubMed  CAS  Google Scholar 

  • Costa RH, Draper KG, Kelly TJ, Wagner EK (1985) An unusual spliced herpes simplex virus type 1 transcript with sequence homology to Epstein-Barr virus DNA. J Virol 54: 317–328.

    PubMed  CAS  Google Scholar 

  • Cranage MP, Kouzarides T, Bankier AT, Satchwell SC, Weston KW, Tomlinson P, Barrell BG, et al. (1986) Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO J 5: 3057–3063.

    PubMed  CAS  Google Scholar 

  • Cranage MP, Smith GL, Bell SE, Hart H, Brown C, Bankier AT, Tomlinson P, et al. (1988) Identification and expression of a human cytomegalovirus glycoprotein with homology to the Epstein-Barr virus BXLF2 product, varicella-zoster virus gpIII, and herpes simplex virus type 1 glycoprotein H. J Virol 62: 1416–1422.

    PubMed  Google Scholar 

  • Crute JJ, Mocarski ES, Lehman IE (1988) A DNA helicase induced by herpes simplex virus type 1. Nucleic Acids Res 16: 6585–6596.

    PubMed  CAS  Google Scholar 

  • Crute JJ, Tsurumi T, Zhu L, Weiler SK, Olivo PD, Challberg MD, Mocarski ES, Lehman IR (1989) Herpes simplex virus 1 helicase-primase: a complex of three herpes-encoded gene products. Proc. Natl Acad Sci USA 86: 2186–2189.

    PubMed  CAS  Google Scholar 

  • Davis MG, Huang E-S (1985) Nucleotide sequence of a human cytomegalovirus DNA fragment encoding a 67-kilodalton phosphorylated viral protein. J Virol 56: 7–11.

    PubMed  CAS  Google Scholar 

  • Davis MG, Mar E-C, Wu Y-M, Huang E-S (1984) Mapping and expression of a human cytomegalovirus major viral protein. J Virol 52: 129–135.

    PubMed  CAS  Google Scholar 

  • Davison AJ, McGeoch DJ (1986) Evolutionary comparisons of the S segments in the genomes of herpes simplex virus type 1 and varicella-zoster virus. J Gen Virol 67: 597–611.

    PubMed  CAS  Google Scholar 

  • Davison AJ, Scott JE (1986) The complete DNA sequence of varicella-zoster virus. J Gen Virol 67: 1759–1816.

    PubMed  CAS  Google Scholar 

  • Davison AJ, Taylor P (1987) Genetic relations between varicella-zoster virus and Epstein-Barr virus. J Gen Virol 68: 1067–1079.

    PubMed  CAS  Google Scholar 

  • Del Val M, Munch K, Reddehase MJ, Koszinowski UH (1989) Presentation of CMV immediate-early antigen to cytolytic T lymphocytes is selectively prevented by viral genes expressed in the early phase. Cell 58: 305–315.

    PubMed  Google Scholar 

  • DeMarchi JM (1981) Human cytomegalovirus DNA: restriction enzyme cleavage maps and map locations for immediate-early, early, and late RNAs. Virology 114: 23–38.

    PubMed  CAS  Google Scholar 

  • DeMarchi JM (1983) Post-transcriptional control of human cytomegalovirus gene expression. Virology 124: 390–402.

    PubMed  CAS  Google Scholar 

  • Depto AS, Stenberg RM (1989) Regulated expression of the human cytomegalovirus pp65 gene: octamer sequence in the promoter is required for activation by viral gene products. J Virol 63: 1232–1238.

    PubMed  CAS  Google Scholar 

  • Desai PJ, Schaffer PA, Minson AC (1988) Excretion of non-infectious virus particles lacking glycoprotein H by a temperature-sensitive mutant of herpes simplex virus type 1: evidence that gH is essential for virion infectivity. J Gen Virol 69: 1147–1156.

    PubMed  CAS  Google Scholar 

  • Dohlman HG, Caron MG, Lefkowitz RJ (1987) A family of receptors coupled to guanine nucleotide regulatory proteins. Biochemistry 26: 2657–2664.

    PubMed  CAS  Google Scholar 

  • Dorsch-Hasler K, Keil GM, Weber F, Jasin M, Schaffner W, Koszinowski UH (1985) A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. Proc Natl Acad Sci USA 82: 8325–8329.

    PubMed  CAS  Google Scholar 

  • Engstrom Y, Francke U (1985) Assignment of the structural gene for subunit M1 of human ribonucleotide reductase to the short arm of chromosome 11. Exp Cell Res 158: 477–483.

    PubMed  CAS  Google Scholar 

  • Farrar GH, Greenaway PJ (1986) Characterization of glycoprotein complexes present in human cytomegalovirus envelopes. J Gen Virol 67: 1469–1473.

    PubMed  CAS  Google Scholar 

  • Ferguson MAJ, Williams AF (1988) Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem 57: 285–320.

    PubMed  CAS  Google Scholar 

  • Fickenscher H, Stamminger T, Ruger R, Fleckenstein B (1989) The role of a repetitive palindromic sequence element in the human cytomegalovirus immediate early enhancer. J Gen Virol 70: 107–123.

    PubMed  CAS  Google Scholar 

  • Fleckenstein B, Muller I, Collins J (1982) Cloning of the complete human cytomegalovirus genome in cosmids. Gene 18: 39–46.

    PubMed  CAS  Google Scholar 

  • Fulton R, Forrest D, McFarlane R, Onions D, Neil JC (1987) Retroviral transduction of T-cell antigen receptor β-chain and myc genes. Nature 326: 190–194.

    PubMed  CAS  Google Scholar 

  • Geballe AP, Mocarski ES (1988) Translational control of cytomegalovirus gene expression is mediated by upstream AUG codons. J Virol 62: 3334–3340.

    PubMed  CAS  Google Scholar 

  • Geballe AP, Spaete RR, Mocarski ES (1986a) A cis-acting element within the 5′ leader of a cytomegalovirus β transcript determines kinetic class. Cell 46: 865–872.

    PubMed  CAS  Google Scholar 

  • Geballe AP, Leach FS, Mocarski EM (1986b) Regulation of cytomegalovirus late gene expression: γ genes are controlled by posttranscriptional events. J Virol 57: 864–874.

    PubMed  CAS  Google Scholar 

  • George DG, Barker WC, Hunt LT (1986) The protein identification resource (PIR). Nucleic Acids Res 14:11–15.

    PubMed  CAS  Google Scholar 

  • Ghazal P, Lubon H, Fleckenstein B, Hennighausen L (1987) Binding of transcription factors and creation of a large nucleoprotein complex on the human cytomegalovirus enhancer. Proc Natl Acad Sci USA 84: 3658–3662.

    PubMed  CAS  Google Scholar 

  • Ghazal P, Lubon H, Hennighausen L (1988) Specific interactions between transcription factors and the promoter-regulatory region of the human cytomegalovirus major immediate-early gene. J Virol 62: 1076–1079.

    PubMed  CAS  Google Scholar 

  • Gibson W (1983) Protein counterparts of human and simian cytomegalovirus. Virology 128: 391–406.

    PubMed  CAS  Google Scholar 

  • Gibson T, Stockwell P, Ginsburg M, Barrell BG (1984) Homology between two EBV early genes and HSV ribonucleotide reductase and 38K genes. Nucleic Acids Res 12: 5087–5099.

    PubMed  CAS  Google Scholar 

  • Goins WF, Stinski MF (1986) Expression of a human cytomegalovirus late gene is posttranscriptionally regulated by a 3′-end-processing event occurring exclusively late after infection. Mol Cell Biol 6:4202–4213.

    PubMed  CAS  Google Scholar 

  • Gompels UA, Craxton MA, Honess RW (1988a) Conservation of gene organization in the lymphotropic herpesviruses herpesvirus saimiri and Epstein-Barr virus. J Virol 62: 757–767.

    PubMed  CAS  Google Scholar 

  • Gompels UA, Craxton MA, Honess RW (1988b) Conservation of glycoprotein H (gH) in herpesviruses: nucleotide sequence of the gH gene from herpesvirus saimiri. J Gen Virol 69: 2819–2829.

    PubMed  CAS  Google Scholar 

  • Greenaway PJ, Wilkinson GWG (1987) Nucleotide sequence of the most abundantly transcribed early gene of human cytomegalovirus strain AD169. Virus Res 7: 17–31.

    PubMed  CAS  Google Scholar 

  • Gretch DR, Kari B, Rasmussen L, Gehrz RC, Stinski MF (1988a) Identification and characterization of three distinct families of glycoprotein complexes in the envelopes of human cytomegalovirus. J Virol 62: 875–881.

    PubMed  CAS  Google Scholar 

  • Gretch DR, Kari B, Gehrz RC, Stinski MF (1988b) A multigene family encodes the human cytomegalovirus glycoprotein complex gcII (gp47-52 complex). J Virol 62: 1956–1962.

    PubMed  CAS  Google Scholar 

  • Grundy JE, McKeating JA, Griffiths PD (1987a) Cytomegalovirus strain AD169 binds β2 microglobulin in vitro after release from cells. J Gen Virol 68: 777–784.

    PubMed  CAS  Google Scholar 

  • Grundy JE, McKeating JA, Ward PJ, Sanderson AR, Griffiths PD (1987b) β2 Microglobulin enhances the infectivity of cytomegalovirus and when bound to the virus enables class 1 HLA molecules to be used as a virus receptor. J Gen Virol 68: 793–803.

    PubMed  CAS  Google Scholar 

  • Heilbronn R, Jahn G, Burkle A, Freese U-K, Fleckenstein B, zur Hausen H (1987) Genomic localization, sequence analysis, and transcription of the putative human cytomegalovirus DNA polymerase gene. J Virol 61: 119–124.

    PubMed  CAS  Google Scholar 

  • Hennighausen L, Fleckenstein B (1986) Nuclear factor 1 interacts with five DNA elements in the promoter region of the human cytomegalovirus major immediate early gene. EMBO J 5: 1367–1371.

    PubMed  CAS  Google Scholar 

  • Hermiston TW, Malone CL, Witte PR, Stinski MF (1987) Identification and characterization of the human cytomegalovirus immediate-early region 2 gene that stimulates gene expression from an inducible promoter. J Virol. 61: 3214–3221.

    PubMed  CAS  Google Scholar 

  • Hodgman TC (1988) A new superfamily of replicative proteins. Nature 333: 22–23.

    PubMed  CAS  Google Scholar 

  • Honess RW (1984) Herpes simplex and the ‘herpes complex’: diverse observations and a unifying hypothesis. J Gen Virol 65: 2077–2107.

    PubMed  CAS  Google Scholar 

  • Honess RW, Bodemer W, Cameron KR, Niller H-H, Fleckenstein B, Randall RE (1986) The A + T-rich genome of herpesvirus saimiri contains a highly conserved gene for thymidylate synthase. Proc Natl Acad Sci USA 83: 3604–3608.

    PubMed  CAS  Google Scholar 

  • Honess RW, Gompels UA, Barrell BG, Craxton M, Cameron KR, Staden R, Chang Y-N, Hayward GS (1989) Deviations from expected frequencies of CpG dinucleotides in herpesvirus DNAs may be diagnostic of differences in the states of their latent genomes. J Gen Virol 70: 837–855.

    PubMed  CAS  Google Scholar 

  • Hunninghake GW, Monick MM, Liu B, Stinski MF (1989) The promoter-regulatory region of the major immediate-early gene of human cytomegalovirus responds to T-lymphocyte stimulation and contains functional cyclic AMP-response elements. J Virol 63: 3026–3033.

    PubMed  CAS  Google Scholar 

  • Hutchinson NI, Tocci MJ (1986) Characterization of a major early gene from the human cytomegalovirus long inverted repeat; predicted amino acid sequence of a 30-kDa protein encoded by the 1.2 kb mRNA. Virology 155: 172–182.

    PubMed  CAS  Google Scholar 

  • Hutchinson NI, Sondermeyer RT, Tocci MJ (1986) Organization and expression of the major genes from the long inverted repeat of the human cytomegalovirus genome. Virology 155: 160–171.

    PubMed  CAS  Google Scholar 

  • Irmiere A, Gibson W (1983) Isolation and characterization of a noninfectious virion-like particle released from cells infected with human strains of cytomegalovirus. Virology 130: 118–133.

    PubMed  CAS  Google Scholar 

  • Irmiere A, Gibson W (1985) Isolation of human cytomegalovirus intranuclear capsids, characterization of their protein constituents, and demonstration that the B-capsid assembly protein is also abundant in noninfectious enveloped particles. J Virol 56: 277–283.

    PubMed  CAS  Google Scholar 

  • Jahan N, Razzaque A, Brady J, Rosenthal LJ (1989) The human cytomegalovirus mtrII colinear region in strain Tanaka is transformation defective. J Virol 63: 2866–2869.

    PubMed  CAS  Google Scholar 

  • Jahn G, Knust E, Schmolla H, Sarre T, Nelson JA, McDougall JK, Fleckenstein B (1984) Predominant immediate-early transcripts of human cytomegalovirus AD169. J Virol 49: 363–370.

    PubMed  CAS  Google Scholar 

  • Jahn G, Kouzarides T, Mach M, Scholl, B-C, Plachter B, Traupe B, Preddie E, et al. (1987) Map position and nucleotide sequence of the gene for the large structural phosphoprotein of human cytomegalovirus. J Virol 61: 1358–1367.

    PubMed  CAS  Google Scholar 

  • Jeang K-T, Hayward GS (1983) A cytomegalovirus DNA sequence containing tracts of tandemly repeated CA dinucleotides hybridises to highly repetitive dispersed elements in mammalian cell genomes. Mol Cell Biol 3: 1389–1402.

    PubMed  CAS  Google Scholar 

  • Jeang KT, Rawlins DR, Rosenfeld P, Shero JH, Kelly T, Hayward GS (1987) Multiple tandemly repeated binding sites for cellular nuclear factor 1 that surround the major immediate-early promoters of simian and human cytomegalovirus. J Virol 61: 1559–1570.

    PubMed  CAS  Google Scholar 

  • Karnik SS, Sakmar TP, Chen H-B, Khorana HG (1988) Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. Proc Natl Acad Sci USA 85: 8459–8463.

    PubMed  CAS  Google Scholar 

  • Keil GM, Ebeling-Keil A, Koszinowski UH (1987) Sequence and structural organization of murine cytomegalovirus immediate-early gene 1. J Virol 61: 1901–1908.

    PubMed  CAS  Google Scholar 

  • Kobilka BK, Dixon RAF, Frielle T, Dohlman HG, Bolanowski MA, Sigal IS, Yang-Feng TL, et al. (1987) cDNA for the human β2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci USA 84: 46–50.

    PubMed  CAS  Google Scholar 

  • Kouzarides T, Bankier AT, Barrell BG (1983) Nucleotide sequence of the transforming region of human cytomegalovirus. Mol Biol Med 1: 47–58.

    PubMed  CAS  Google Scholar 

  • Kouzarides T, Bankier AT, Satchwell SC, Weston K, Tomlinson P, Barrell BG (1987a) Sequence and transcription analysis of the human cytomegalovirus DNA polymerase gene. J Virol 61: 125–133.

    PubMed  CAS  Google Scholar 

  • Kouzarides T, Bankier AT, Satchwell SC, Weston K, Tomlinson P, Barrell BG (1987b) Large-scale rearrangement of homologous regions in the genomes of HCMV and EBV. Virology 157: 397–413.

    PubMed  CAS  Google Scholar 

  • Kouzarides T, Bankier AT, Satchwell SC, Preddie E, Barrell BG (1988) An immediate early gene of human cytomegalovirus encodes a potential membrane glycoprotein. Virology 165: 151–164.

    PubMed  CAS  Google Scholar 

  • Kozak M (1981) Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Res 9: 5233–5252.

    PubMed  CAS  Google Scholar 

  • Kozak M (1982) Analysis of ribosome binding sites from the s1 message of reovirus: initiation at the first and second AUG codons. J Mol Biol 156: 807–820.

    PubMed  CAS  Google Scholar 

  • Kubo T, Fukuda K, Mikami A, Maeda A, Takahashi H, Mishina M, Haga T, et al. (1986) Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323: 411–416.

    PubMed  CAS  Google Scholar 

  • Landini M-P, Michelson S (1988) Human cytomegalovirus proteins. Prog Med Virol 35: 152–185.

    PubMed  CAS  Google Scholar 

  • Laniken H, Graslund A, Thelander L (1982) Induction of a new ribonucleotide reductase activity after infection of mouse L cells with pseudorabies virus. J Virol 41: 893–900.

    Google Scholar 

  • Leach FS, Mocarski ES (1989) Regulation of cytomegalovirus late-gene expression: differential use of three start sites in the transcriptional activation of ICP36 gene expression. J Virol 63: 1783–1791.

    PubMed  CAS  Google Scholar 

  • Lee JY, Irmiere A, Gibson W (1988) Primate cytomegalovirus assembly: evidence that DNA packaging occurs subsequent to B capsid assembly. Virology 167: 87–96.

    PubMed  CAS  Google Scholar 

  • Littler E, Zeuthen J, McBride AA, Trost-Sorensen E, Powell KL, Walsh-Arrand JE, Arrand JR (1986) Identification of an Epstein-Barr virus-coded thymidine kinase. EMBO J 5: 1959–1966.

    PubMed  CAS  Google Scholar 

  • Mach M, Utz U, Fleckenstein B (1986) Mapping of the major glycoprotein gene of human cytomegalovirus. J Gen Virol 67: 1461–1467.

    PubMed  CAS  Google Scholar 

  • Marschalek R, Amon-Bohm E, Stoerker J, Klages S, Fleckenstein B, Dingermann T (1989) CMER, an RNA encoded by human cytomegalovirus is most likely transcribed by RNA polymerase III. Nucleic Acids Res 17: 631–643.

    PubMed  CAS  Google Scholar 

  • Martignetti JA (1987) Sequence analysis of HCMV. Dissertation, Cambridge University.

    Google Scholar 

  • Martinez J, St Jeor SC (1986) Molecular cloning and analysis of three cDNA clones homologous to human cytomegalovirus RNAs present during late infection. J Virol 60: 531–538.

    PubMed  CAS  Google Scholar 

  • Martinez J, Lahijani RS, St Jeor SC (1989) Analysis of a region of the human cytomegalovirus (AD169) genome coding for a 25-kilodalton virion protein. J Virol 63: 233–241.

    PubMed  CAS  Google Scholar 

  • McDonough SH, Spector DH (1983) Transcription in human fibroblasts permissively infected by human cytomegalovirus strain AD169. Virology 125: 31–46.

    PubMed  CAS  Google Scholar 

  • McDonough SH, Staprans SI, Spector DH (1985) Analysis of the major transcripts encdoded by the long repeat of human cytomegalovirus strain AD169. J Virol 53: 711–718.

    PubMed  CAS  Google Scholar 

  • McGeoch DJ (1985) On the predictive recognition of signal peptide sequences. Virus Res 3: 271–286.

    PubMed  CAS  Google Scholar 

  • McGeoch DJ (1987) The genome of herpes simplex virus: structure, replication and evolution. J Cell Sci [Suppl] 7: 67–94.

    CAS  Google Scholar 

  • McGeoch DJ, Davison AJ (1986) Alphaherpesviruses possess a gene homologous to the protein kinase gene family of eukaryotes and retroviruses. Nucleic Acids Res 14: 1765–1777.

    PubMed  CAS  Google Scholar 

  • McGeoch DJ, Dalrymple MA, Davison AJ, Dolan A, Frame MC, McNab D, Perry LJ, et al. (1988a) The complete sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69: 1531–1574.

    PubMed  CAS  Google Scholar 

  • McGeoch DJ, Dolan A, Frame MC (1986) DNA sequence of the region in the genome of herpes simplex virus type 1 containing the exonuclease gene and neighbouring genes. Nucleic Acids Res 14: 3435–3448.

    PubMed  CAS  Google Scholar 

  • McGeoch DJ, Dalrymple MA, Dolan A, McNab D, Perry L, Taylor P, Challberg MD (1988b) Structures of herpes simplex virus type 1 genes required for replication of virus DNA. J Virol 62: 444–453.

    PubMed  CAS  Google Scholar 

  • McKnight SL (1980) The nucleotide sequence and transcript map of the herpes simplex virus thymidine kinase gene. Nucleic Acids Res 8: 5949–5963.

    PubMed  CAS  Google Scholar 

  • Meyer H, Bankier AT, Landini MP, Brown CM, Barrell BG, Ruger B, Mach M (1988) Identification and procaryotic expression of the gene coding for the highly immunogenic 28-kilodalton structural phosphoprotein (pp28) of human cytomegalovirus. J Virol 62: 2243–2250.

    PubMed  CAS  Google Scholar 

  • Mocarski ES, Roizman B (1982) Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 31: 89–97.

    PubMed  CAS  Google Scholar 

  • Mocarski ES, Pereira L, Michael N (1985) Precise localization of genes on large animal virus genomes: use of λgt11 and monoclonal antibodies to map the gene for a cytomegalovirus protein family. Proc Natl Acad Sci USA 82: 1266–1270.

    PubMed  CAS  Google Scholar 

  • Mocarski ES, Pereira L, McCormick AL (1988) Human cytomegalovirus ICP22, the product of the HWLF1 reading frame, is an early nuclear protein that is released from cells. J Gen Virol 69: 2613–2621.

    PubMed  CAS  Google Scholar 

  • Mullaney J, Moss HWMcL, McGeoch DJ (1989) Gene UL2 of herpes simplex virus type 1 encodes a uracil-DNA glycosylase. J Gen Virol 70: 449–454.

    PubMed  CAS  Google Scholar 

  • Nathans J (1987) Molecular biology of visual pigments. Annu Rev Neurosci 10: 163–194.

    PubMed  CAS  Google Scholar 

  • Nathans J, Hogness DS (1983) Isolation, sequence analysis, and intron-exon arrangement of the gene coding bovine rhodopsin. Cell 34: 807–814.

    PubMed  CAS  Google Scholar 

  • Nikas I, McLauchlan J, Davison AJ, Taylor WR, Clements JB (1986) Structural features of ribonucleotide reductase. Proteins 1: 376–384.

    PubMed  CAS  Google Scholar 

  • Olivo PD, Nelson NJ, Challberg MD (1988) Herpes simplex virus DNA replication: the UL9 gene encodes an origin-binding protein. Proc Natl Acad Sci USA 85: 5414–5418.

    PubMed  CAS  Google Scholar 

  • Oram JD, Downing RG, Akrigg A, Doggleby CJ, Wilkinson GWG, Greenaway PJ (1982) Use of recombinant plasmids to investigate the structure of the human cytomegalovirus genome. J Gen Virol 59: 111–129.

    PubMed  CAS  Google Scholar 

  • Pachl C, Probert WS, Hermsen KM, Masiarz FR, Rasmussen L, Merigan, TC, Spaete RR (1989) The human cytomegalovirus strain Towne glycoprotein H gene encodes glycoprotein p86. Virology 169: 418–426.

    PubMed  CAS  Google Scholar 

  • Pande H, Baak SW, Riggs AD, Clark BR, Shively JE, Zaia JA (1984) Cloning and physical mapping of a gene fragment coding for a 64-kilodalton major late antigen of human cytomegalovirus. Proc Natl Acad Sci USA 81: 4965–4969.

    PubMed  CAS  Google Scholar 

  • Pande H, Campo K, Churchill MA, Clark BR, Zaia JA (1988) Genomic localization of the gene encoding a 32-kDa capsid protein of human cytomegalovirus. Virology 167: 306–310.

    PubMed  CAS  Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85: 2444–2448.

    PubMed  CAS  Google Scholar 

  • Pereira L, Hoffman M, Gallo D, Cremer N (1982) Monoclonal antibodies to human cytomegalovirus: three surface membrane proteins with unique immunological and electrophoretic properties specify cross-reactive determinants. Infect Immun 36: 924–932.

    PubMed  CAS  Google Scholar 

  • Pertuiset B, Boccara M, Cerbrian J, Berthelot N, Chousterman S, Puvion-Dutilleul F, Sisman J, Sheldrick P (1989) Physical mapping and nucleotide sequence of a herpes simplex virus type 1 gene required for capsid assembly. J Virol 63: 2169–2179.

    PubMed  CAS  Google Scholar 

  • Petrovskis EA, Timmins JG, Armentrout MA, Marchioli CC, Yancey RJ Jr, Post LE (1986) DNA sequence of the gene for pseudorabies virus gp50, a glycoprotein without N-linked glycosylation. J Virol 59: 216–223.

    PubMed  CAS  Google Scholar 

  • Pizzorno MC, O’Hare P, Sha L, LaFemina RL, Hayward GS (1988) trans-Activation and autoregulation of gene expression by the immediate-early region 2 gene products of human cytomegalovirus. J Virol 62: 1167–1179.

    PubMed  CAS  Google Scholar 

  • Preston VG, Fisher FB (1984) Identification of the herpes simplex virus type 1 gene encoding the dUTPase. Virology 138: 58–68.

    PubMed  CAS  Google Scholar 

  • Preston VG, Coates JAV, Rixon FJ (1983) Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. J Virol 45: 1056–1064.

    PubMed  CAS  Google Scholar 

  • Rasmussen LE, Nelson RM, Kelsall DC, Merigan TC (1984) Murine monoclonal antibody to a single protein neutralizes the infectivity of human cytomegalovirus. Proc Natl Acad Sci USA 81: 876–880.

    PubMed  CAS  Google Scholar 

  • Rasmussen RD, Staprans SI, Shaw SB, Spector DH (1985a) Sequences in human cytomegalovirus which hybridize with the avian retrovirus oncogene v-myc are G + C rich and do not hybridize with the human c-myc gene. Mol Cell Biol 5: 1525–1530.

    PubMed  CAS  Google Scholar 

  • Rasmussen L, Mullenax J, Nelson R, Merigan TC (1985b) Viral polypeptides detected by a complement-dependent neutralizing murine monclonal antibody to human cytomegalovirus. J Virol 55: 274–280.

    PubMed  CAS  Google Scholar 

  • Razzaque et al. (1988) Localization and DNA sequence analysis of the transforming domain (mtrII) of human cytomegalovirus. Proc Natl Acad Sci USA 85: 5709–5713.

    PubMed  CAS  Google Scholar 

  • Reichard P (1989) Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem 57: 349–374.

    Google Scholar 

  • Rixon FJ, Cross AM, Addison C, Preston VG (1988) The products of herpes simplex virus type 1 gene UL26 which are involved in DNA packaging are strongly associated with empty but not with full capsids. J Gen Virol 69: 2879–2891.

    PubMed  CAS  Google Scholar 

  • Robson L, Gibson W (1989) Primate cytomegalovirus assembly protein: genome location and nucleotide sequence. J. Virol. 63: 669–676.

    PubMed  CAS  Google Scholar 

  • Roby C, Gibson W (1986) Characterization of phosphoproteins and protein kinase activity of virions, noninfectious enveloped particles, and dense bodies of human cytomegalovirus. J Virol 59: 714–727.

    PubMed  CAS  Google Scholar 

  • Ruger B, Klages S, Walla B, Albrecht J, Fleckenstein B, Tomlinson P, Barrell BG (1987) Primary structure and transcription of the genes coding for the two virion phosphoproteins pp65 and pp71 of human cytomegalovirus. J Virol 61: 446–453.

    PubMed  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

    PubMed  CAS  Google Scholar 

  • Sjoberg B-M, Eklund H, Fuchs JA, Carlson J, Standart NM, Ruderman JV, Bray SJ, Hunt T (1985) Identification of the stable free radical tyrosine residue in ribonucleotide reductase. FEBS Lett 183: 99–102.

    PubMed  CAS  Google Scholar 

  • Smith RF, Smith TF (1989) Identification of new protein kinase-related genes in three herpes viruses, herpes simplex virus, varicella-zoster virus and Epstein-Barr Virus. J Virol 63: 450–455.

    PubMed  CAS  Google Scholar 

  • Spaete RR, Mocarski ES (1985a) Regulation of cytomegalovirus gene expression: α and β promoters are trans activated by viral functions in permissive human fibroblasts. J Virol 56: 135–143.

    PubMed  CAS  Google Scholar 

  • Spaete RR, Mocarski ES (1985b) The a sequence of the cytomegalovirus genome functions as a cleavage/packaging signal for herpes simplex virus defective genomes. J Virol. 54: 817–824.

    PubMed  CAS  Google Scholar 

  • Spaete RR, Mocarski ES (1987) Insertion and deletion mutagenesis of the human cytomegalovirus genome. Proc Natl Acad Sci USA 84: 7213–7217.

    PubMed  CAS  Google Scholar 

  • Spaete RR, Thayer RM, Probert WS, Masiarz FR, Chamberlain SH, Rasmussen L, Merigan TC, Pachl C (1988) Human cytomegalovirus strain Towne glycoprotein B is processed by proteolytic cleavage. Virology 167: 207–225.

    PubMed  CAS  Google Scholar 

  • Staden R (1986) The current status and portability of our sequencing handling software. Nucleic Acids Res 14: 217–231.

    PubMed  CAS  Google Scholar 

  • Staden R (1988) Methods to define and locate patterns of motifs in sequences. CABIOS 4: 53–60.

    PubMed  CAS  Google Scholar 

  • Stannard LM (1989) β2 microglobulin binds to the tegument of cytomegalovirus: an immunogold study. J Gen Virol 70: 2179–2184.

    PubMed  CAS  Google Scholar 

  • Staprans SI, Spector DH (1986) 2.2-kilobase class of early transcripts encoded by cell-related sequences in human cytomegalovirus strain AD169. J Virol 57: 591–602.

    PubMed  CAS  Google Scholar 

  • Stenberg RM, Thomsen DR, Stinski MF (1984) Structural analysis of the major immediate early gene of human cytomegalovirus. J Virol 49: 190–191.

    PubMed  CAS  Google Scholar 

  • Stenberg RM, Witte PR, Stinski MF (1985) Multiple spliced and unspliced transcripts from human cytomegalovirus immediate-early region 2 and evidence for a common initiation site within immediate-early region 1. J Virol 56: 665–675.

    PubMed  CAS  Google Scholar 

  • Stinski MF (1977) Synthesis of proteins and glycoproteins in cells infected with human cytomegalovirus. J Virol 23: 751–767.

    PubMed  CAS  Google Scholar 

  • Stinski MF, Roehr TJ (1985) Activation of the major immediate early gene of human cytomegalovirus by cis-acting elements in the promoter-regulatory sequence and by virus-specific trans-acting components. J Virol 55: 431–441.

    PubMed  CAS  Google Scholar 

  • Stinski MF, Thomsen DR, Stenberg RM, Goldstein LC (1983) Organization and expression of the immediate early genes of human cytomegalovirus. J Virol 46: 1–14.

    PubMed  CAS  Google Scholar 

  • Tamashiro JC, Filpula D, Friedmann T, Spector DH (1984) Structure of the heterogeneous L-S junction region of human cytomegalovirus strain AD169 DNA. J Virol 52: 541–584.

    PubMed  CAS  Google Scholar 

  • Thompson R, Honess RW, Taylor L, Morran J, Davison AJ (1987) Varicella-zoster virus specifies a thymidylate synthetase. J Gen Virol 68: 1449–1455.

    PubMed  CAS  Google Scholar 

  • Thomsen DR, Stenberg RM, Goins WF, Stinski MF (1984) Promoter-regulatory region of the major immediate early gene of human cytomegalovirus. Proc Natl Acad Sci USA 81: 659–663.

    PubMed  CAS  Google Scholar 

  • Townsend A, Ohlen C, Bastin J, Ljunggren H-G, Foster L, Karre K (1989) Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature 340: 443–448.

    PubMed  CAS  Google Scholar 

  • Trimble JJ, Murthy CS, Bakker A, Grassmann R, Desrosiers RC (1988) A gene for dihydrofolate reductase in a herpesvirus. Science 239: 1145–1147.

    PubMed  CAS  Google Scholar 

  • Wang F, Petti L, Braun D, Seung S, Kieff E (1987) A bicistronic Epstein-Barr virus mRNA encodes two nuclear proteins in latently infected, growth-transformed lymphocytes. J Virol 61: 945–954.

    PubMed  CAS  Google Scholar 

  • Wathen MW, Stinski MF (1982) Temporal patterns of human cytomegalovirus transcription: mapping the viral RNAs synthesized at immediate early, early, and late times after infection. J Virol 41: 462–477.

    PubMed  CAS  Google Scholar 

  • Weber PC, Challberg MD, Nelson NJ, Levine M, Glorioso JC (1988) Inversion events in the HSV-1 genome are directly mediated by the viral DNA replication machinery and lack sequence specificity. Cell 54: 369–381.

    PubMed  CAS  Google Scholar 

  • Weller SK, Aschman DP, Sacks WR, Coen DM, Schaffer PA (1983) Genetic analysis of temperature-sensitive mutants of HSV-1: the combined use of complementation and physical mapping for cistron assignment. Virology 130: 290–305.

    PubMed  CAS  Google Scholar 

  • Weston K (1988) An enhancer element in the short unique region of human cytomegalovirus regulates the production of a group of abundant immediate early transcripts. Virology 162: 406–416.

    PubMed  CAS  Google Scholar 

  • Weston K, Barrell BG (1986) Sequence of the short unique region, short repeats and part of the long repeat of human cytomegalovirus. J Mol Biol 192: 177–208.

    PubMed  CAS  Google Scholar 

  • Whitton JL, Clements JB (1984) The junctions between the repetitive and the short unique sequences of the herpes simplex virus genome are determined by the polypeptide-coding regions of two spliced immediate-early mRNAs. J Gen Virol 65: 451–466.

    PubMed  CAS  Google Scholar 

  • Wilkinson GWG, Akrigg A, Greenaway PJ (1984) Transcription of the immediate early genes of human cytomegalovirus strain AD169. Virus Res 1: 101–116.

    PubMed  CAS  Google Scholar 

  • Worrad DM, Caradonna S (1988) Identification of the coding sequence for herpes simplex virus uracil DNA glycosylase. J. Virol. 62: 4774–4777.

    PubMed  CAS  Google Scholar 

  • Wright DA, Staprans SI, Spector DH (1988) Four phosphoproteins with common amino termini are encoded by human cytomegalovirus AD169. J Virol 62: 331–340.

    PubMed  CAS  Google Scholar 

  • Wu CA, Nelson NJ, McGeoch DJ, Challberg MD (1988) Identification of herpes simplex virus type 1 genes required for origin-dependent DNA synthesis. J Virol 62: 435–443.

    PubMed  CAS  Google Scholar 

  • Yang-Feng TL, Barton DE, Thelander L, Lewis WH, Srinivasan PR, Francke U (1987) Ribonucleotide reductase M2 subunit sequences mapped to four different chromosomal sites in humans and mice: functional locus identified by its amplification in hydroxyurea-resistant cell-lines. Genomics 1: 77–86.

    PubMed  CAS  Google Scholar 

  • Zhang CX, Decaussin G, de Turenne Tessier M, Daillie J, Ooka T (1987) Identification of an Epstein-Barr virus-specific deoxyribonuclease gene using complementary DNA. Nucleic Acids Res 15: 2707–2717.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chee, M.S. et al. (1990). Analysis of the Protein-Coding Content of the Sequence of Human Cytomegalovirus Strain AD169. In: McDougall, J.K. (eds) Cytomegaloviruses. Current Topics in Microbiology and Immunology, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74980-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74980-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74982-7

  • Online ISBN: 978-3-642-74980-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics