Differences in risk factors between early and late diagnosed DDH

Phillipa Sharpe¹, Kishore Mulpuri¹, Annabelle Chan², Peter J Cundy¹,³

¹Women’s & Children’s Hospital
²Department of Health
³University of Adelaide

Corresponding Author:
Ms Phillipa Sharpe
South Australian Birth Defects Register
Women’s and Children’s Hospital
72 King William Road
North Adelaide SA 5006
South Australia
Ph: (+61) 8 8161 7368
Fax: (+61) 8 8161 6088
Email: cywhs.sabdr@cywhs.sa.gov.au

Study conducted at the Women’s and Children’s Hospital, Adelaide, South Australia.

Keywords: developmental dysplasia of the hip, late diagnosis, epidemiology
Abstract

Background: Developmental dysplasia of the hip (DDH) is a commonly diagnosed orthopaedic condition affecting 7.3 per 1000 births in South Australia. Clinical screening programmes exist to identify the condition early to gain the maximum benefit from early treatment. Although these screening programmes are effective, there are still cases that are missed. Previous research by the authors has highlighted key risk factors in the development of DDH. This study aimed to compare the risk factors of those cases of DDH identified late with those that were diagnosed early.

Methods: A total of 1281 children with DDH born in 1988-1996 were identified from the South Australian Birth Defects Register (SABDR) Hospital records of those who had surgery for DDH within 5 years of life were examined for diagnosis details. Twenty-seven (2.1%) had been diagnosed at or after three months of age and were considered the late DDH cases (a prevalence of 0.15 per 1000 live births). Their socio-demographic, pregnancy and birth factors were compared with early diagnosed DDH cases.

Findings: The results of this study showed that female babies, vertex presentation, normal deliveries, rural births and discharge from hospital less than four days after birth all significantly increased the risk of late diagnosis among children with DDH.

Interpretation: Our results show differences in the risk factors for early and late diagnosed DDH. Some known risk factors for DDH are in fact protective for late diagnosis. These results highlight the need for broad newborn population screening and continued vigilance and training in screening programmes.
Introduction

Developmental dysplasia of the hip (DDH) is a common congenital abnormality that affects the developing hip joint of the newborn. DDH refers to a spectrum of disease, including hips that are unstable, subluxated, dislocated and/or have malformed acetabula.[1] Traditionally radiological examination has been used to diagnose DDH; however, some hips that have acetabular dysplasia but are enlocated could be grouped with hips that are truly dislocated.

Over the last two decades, ultrasound has also been used to detect DDH. Ultrasound has the potential to identify minor abnormalities that are likely to resolve spontaneously without treatment. Therefore this method of diagnosis may lead to an apparent exaggeration of affected neonates.

Recent studies from the United Kingdom have shown that screening for DDH using ultrasound detected more cases than routine physical examination, but resulted in more children being treated.[2] A number of unfavourable treatment outcomes has also been shown, due to treatment of unaffected children with a false positive screening result.[3] Conversely, the results from the Medical Research Council’s (MRC) United Kingdom Hip Trial showed that the use of ultrasound in infants with screen-detected clinical hip instability, was not associated with an increased risk of surgical treatment by two years of age.[4]

In South Australia the Ortolani and Barlow tests are the basis of routine clinical examination screening programmes designed to detect DDH as soon after birth as possible.[5][6] These tests are performed at birth, on each day during hospitalisation and at well-baby clinics at six weeks, three, six and twelve months. Ultrasound examination is only used if the clinical examinations in the first few months are equivocal. DDH cases in the SABDR include dislocated/dislocatable and subluxated/subluxatable hips and the prevalence in the study period was 7.3 per 1000 livebirths. If mild degrees of acetabular dysplasia in stable hips are included, an earlier study in one year (1991) obtained a prevalence of 10.8 per 1000 births. Despite this rigorous screening, each year a few patients with DDH are not detected in the first three months of life and are considered late diagnosed. The late diagnosed DDH cases in this study were all true dislocations with the femoral head dislocated outside the acetabulum, confirmed on ultrasound or radiographs.

There are several studies in the literature that report rates of late diagnosis of DDH.[7][8][9][10][11][12][13][14] Interpretation and comparison of rates of late diagnosed DDH is often difficult, especially in relation to the strict definition and age at diagnosis. Reported rates can range from 0-07 to 2.0 per 1000 births.[10] The cut-off age for inclusion for late diagnosis is not consistent in the literature and can vary from six weeks to twenty months.[6][9] Palmen et. al. reported a prevalence of late diagnosed DDH in the presence of a well-established neonatal screening procedure of 0.53 per 1000 between the years 1973-1976.[14] They reported that one quarter of the late diagnosed cases had not been diagnosed by seven months of age and that 3% were diagnosed after two years. In a study from the United Kingdom between 1991 and 1995, late DDH cases were defined as cases presenting after the age of six weeks.[9]

Our earlier work in South Australia involving 916 DDH cases born in 1988-1993, found that 55 cases required surgical treatment in the first five years of life.[13] 22 of these were late diagnosed at or after three months and 33 were diagnosed before three months. If we assume that all late diagnosed cases required surgery, the proportion of early diagnosed cases who
required surgical treatment was only 3.7% (33 out of 894). This demonstrates the importance of early diagnosis.

A single study in Canada examined the differences in epidemiologic characteristics between early and late diagnosed cases of DDH.[7] The authors did not report an overall population prevalence of DDH but found that 21% had been diagnosed late, with the cut-off point for late diagnosis being twenty months. Some significant epidemiological differences were found. Right sided DDH was significantly higher in the late diagnosed group (p<0·0002) as were cases of bilateral DDH (p=0·006). There were more females with DDH in the late diagnosed group, however this difference was not statistically significant (p=0·09).[7]

South Australian studies have previously confirmed breech presentation and female sex to be risk factors for DDH.[15] [16] As there have been few studies on factors which increase the risk for late diagnosis, the aim of this study was to identify specific differences in the epidemiology of early and late diagnosed DDH.

Materials and Methods

In South Australia, details of mother and baby have been routinely provided, since 1981, on a perinatal data collection form by midwives to the Pregnancy Outcome Statistics Unit of the South Australian Department of Health. The data cover more than 99·9% of all births and include congenital abnormalities diagnosed at birth. Notifications of congenital abnormalities at birth have been supplemented by notifications up to the child’s fifth birthday to the South Australian Birth Defects Register since 1986. These supplementary data are gathered from hospitals, special investigation and treatment centres, and practitioners treating children. These data are collected under specific legislation. Research conducted by the South Australian Birth Defects Register has been approved by the Research Ethics Committee of the Women’s and Children’s Hospital, Adelaide, South Australia.

Notifications of DDH were retrieved from the South Australian Birth Defects Register (SABDR) for children born in 1988 to 1996, yielding 1281 cases of DDH from 176,427 live births. The State’s database for inpatient separations (for 1988 – 2001) was used to identify all children born between 1988 – 1996 who had surgery for DDH within the first five years of life. This long follow up period of the Birth Defects Register restricted the number of years able to be included in the study to only those where five years of ascertainment had been completed, i.e. up to 2001. Hospital medical records of the children who had surgery for DDH were reviewed to determine the timing and circumstances of diagnosis. Twenty-seven cases were found to have been diagnosed at or after three months of age and were considered late diagnosed DDH. These 27 cases were true dislocations with the femoral head dislocated outside the acetabulum, confirmed by radiographs. In some instances DDH had been diagnosed early but treated late or conservative treatment had been unsuccessful so that surgery followed. These were not included in the late diagnosis group. The remaining 1254 DDH were used as affected controls in the epidemiological analysis for potential risk factors. Cases and controls were linked to the SA Pregnancy Outcome Statistics Unit perinatal database by an identifier, common to both data sets. Maternal demographic factors, pregnancy and delivery details and complications were retrieved. Mother’s race, mother’s age, birth hospital type, previous births, baby sex, presentation at delivery, method of delivery, birth weight, gestation, and length of hospital stay were compared.
Agreement between the perinatal data collection and hospital medical records has previously been established to be high with kappa values of 0.85 to 1.0 for risk factors examined in this study.[17]

Results

In this series, 27 of 1281 DDH cases born between 1988 and 1996 were diagnosed at or after three months and were categorised as late diagnosed DDH. The prevalence of late diagnosed DDH over this nine year period was 0.15 per 1000 live births. In this group there was a female preponderance with twenty-six females and one male. There were twenty-one unilateral cases of DDH, eighteen of these were on the left and three on the right. There were six cases of bilateral DDH. The mean age at diagnosis was 14.2 months (range 3 - 52 months), Figure 1.

Presentation at delivery

If cases where presentation at delivery was unknown are excluded, twenty-five out of twenty-six cases (96.2%) had a vertex presentation compared to 872 (69.8%) of the controls. There was one case (3.8%) with breech presentation in the late DDH group compared to 369 (29.5%) controls, Odds Ratio (OR)=0.09 (95% CI 0.0-0.58, p=0.008), indicating that breech presentation is protective for late DDH (Table 1), an interesting result considering breech presentation is a well-known risk factor for DDH.
Table 1. Crude odds ratios (OR) for various factors associated with late diagnosed DDH

<table>
<thead>
<tr>
<th>Variables</th>
<th>No. of subjects</th>
<th>Crude OR 95% CI</th>
<th>Statistical significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cases (n=27#)</td>
<td>Controls (n=1254#)</td>
<td></td>
</tr>
<tr>
<td>Presentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertex</td>
<td>25</td>
<td>872</td>
<td>1·00</td>
</tr>
<tr>
<td>Breech</td>
<td>1</td>
<td>369</td>
<td>0·09 (0·00, 0·58)</td>
</tr>
<tr>
<td>Face</td>
<td>0</td>
<td>9</td>
<td>Undefined</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Method of delivery</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spontaneous vaginal</td>
<td>18</td>
<td>537</td>
<td>1·00</td>
</tr>
<tr>
<td>Other vaginal (inc. ventouse & forceps)</td>
<td>5</td>
<td>232</td>
<td>0·64 (0·18, 1·83)</td>
</tr>
<tr>
<td>Caesarean section</td>
<td>3</td>
<td>481</td>
<td>0·19 (0·04, 0·64)</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sex of baby</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1</td>
<td>277</td>
<td>1·00</td>
</tr>
<tr>
<td>Female</td>
<td>26</td>
<td>973</td>
<td>7·40 (1·20,304.54)</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Hospital category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>10</td>
<td>173</td>
<td>3·89 (1·61, 9·25)</td>
</tr>
<tr>
<td>Home birth</td>
<td>1</td>
<td>0</td>
<td>Undefined</td>
</tr>
<tr>
<td>Metropolitan</td>
<td>16</td>
<td>1077</td>
<td>1·00</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>No. of days before discharge from birth hospital (1 home birth excluded)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 4 days</td>
<td>7</td>
<td>123</td>
<td>3·38 (1·17, 8·58)</td>
</tr>
<tr>
<td>≥ 4 days</td>
<td>19</td>
<td>1127</td>
<td>1·00</td>
</tr>
<tr>
<td>Median</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Data for 1 case and 4 controls were not complete.

Method of Delivery
When compared to early diagnosed DDH, cases delivered by caesarean section had a significantly reduced crude odds ratio for late diagnosis OR=0·19 (95% CI 0-04-0·64), p=0·005 (Table 1). Other vaginal deliveries were also at reduced risk OR=0·64 (95%CI 0·18-1·83) for late diagnosis; however, this did not reach statistical significance.

Sex of baby
Twenty-six (96·3%) out of the twenty-seven late DDH cases were female compared to 973 (77·8%) controls OR=7·40 (95% CI 1·20-304·54, p=0·04) (Table 1). This highlights the added increased risk for female babies.

Hospital category
Ten out of twenty-seven late DDH cases (37%) were found to have been born in a rural hospital compared to only 173 (13·8%) of the controls OR=3·89 (95%CI 1·61-9·25) p=0·002
(Table 1), indicating that late diagnosis of DDH was nearly four times more likely to occur in a rural hospital than a metropolitan hospital.

Length of Stay
The median length of stay for the late DDH cases was four days compared to six days in the controls. Babies discharged within four days were nearly three and a half times (OR=3.38) more likely to have late diagnosed than early-diagnosed DDH. This finding was statistically significant (p=0.012) (Table 1).

Maternal Factors
Maternal factors such as mother’s age, mother’s race, mother’s marital status and number of previous births, as well as baby’s birth weight and gestation were compared between the cases and controls. No statistically significant differences were found.

Method of initial diagnosis
In this series of 27 late diagnosed cases of DDH, most cases were initially identified by the parents and were then referred for medical examination and further investigation. Others were first noticed by a Child and Youth Health professional or by the child’s local general practitioner. There were four cases where the initial method of diagnosis was not known. Two others were incidental findings, detected during examination for other conditions. (Table 2)

<table>
<thead>
<tr>
<th>Method</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family noticed limp when child started to walk:
- Restriction in hip movement
- Dragging leg
- Waddling or limping gait</td>
<td>12 (44.4%)
4
2
6</td>
</tr>
<tr>
<td>First noticed by Child and Youth Health or family practitioner</td>
<td>9 (33.3%)</td>
</tr>
<tr>
<td>Incidental finding during examination for other conditions</td>
<td>2 (7.4%)</td>
</tr>
<tr>
<td>Unknown method of diagnosis</td>
<td>4 (14.8%)</td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
</tr>
</tbody>
</table>

Discussion
The epidemiology of late diagnosed DDH has received little previous attention in the literature and direct comparison between various studies is difficult due to many factors. Firstly, the cut-off age for diagnosing late DDH can range from six weeks to twenty months.[6][8][13] The age at which a child presents with the condition will influence the ease of treatment with early diagnosis and treatment usually ensuring a good result and preventing early hip osteoarthritis in adult life. Earlier studies have shown that early detection also reduces the need for surgical intervention.[13][18]

The prevalence of late diagnosed DDH in South Australia was much lower than other reported studies with 0.15 cases per 1000 live births compared to 0.53 and 0.47 per 1000 live
births in other studies.[8][14] This highlights the effectiveness of the South Australian clinical neonatal screening programme in detecting cases of DDH early. However it is difficult to compare these figures directly as the definitions of late DDH are not consistent in the literature and we have only included cases of late diagnosis requiring surgery.

Babies with a breech presentation had a reduced risk of late diagnosis of DDH (OR=0·09, p=0·008). It is possible that these babies were more closely examined in the neonatal period for DDH with the treating paediatrician/neonatologist knowing that breech presentation babies are at higher risk of DDH. In addition, there may be some referral of rural babies with breech presentation to larger metropolitan hospitals, resulting in closer neonatal examination.

Caesarean section deliveries also had a reduced risk of late diagnosis of DDH (OR=0·19, p=0·005). A baby is more likely to be examined by an experienced paediatrician/neonatologist after a caesarean section delivery than after a routine vaginal delivery. This may contribute to the ‘protective’ effect of caesarean section.

Rural births had a four times increased risk for late DDH compared to metropolitan births. The reason for this difference may be that rural practitioners, who deliver smaller numbers of babies per year than their metropolitan colleagues, and have a high turnover rate, would have reduced opportunity to examine as many babies by the Barlow and Ortolani manoeuvres. This implies that training in clinical examination and familiarity with the use of that examination technique is of paramount importance. This may be especially relevant to areas where medical staff have lower exposures to neonates or areas where there may be higher staff turnover.

Females have been demonstrated to be at even greater risk of late diagnosis than for early diagnosis (OR=7·4). This has been reported in other studies.[8] The reason for this repeated finding remains unknown. Some authors have implied a female susceptibility to relaxin hormone and more recently a possible relaxin hormone receptor sensitivity has been queried.[19]

Infants discharged from hospital relatively early (< four days) after delivery were also found to be significantly more at risk of having late diagnosed DDH. With the increasing demand for hospital beds, earlier discharges to community based supports are favoured in many situations. Over the study period the mean length of stay for all babies born at term (≥37weeks) in South Australian hospitals, decreased from 5·8 days to 4·3 days.[20] This reduction may inevitably result in a small group of babies that are not examined as often as those with longer hospital stays. A shorter hospital stay provides the clinician with fewer opportunities to examine a baby in a relaxed state (which is paramount for a proper Ortolani / Barlow clinical examination).

Whether late diagnosed DDH has the same aetiology as DDH diagnosed earlier, remains unknown. However, significant epidemiological differences exist between the two groups. The results that breech presentation and caesarean delivery are protective may be due to these babies receiving greater medical attention.

One limitation of this study is that the number of cases with late diagnosed DDH is small. However, significant differences have been identified with female sex, rural births, vertex presentation, vaginal deliveries and early discharge increasing the risk of late diagnosis. Some of the results of this study, such as that pertaining to rural births, may not be applicable to other populations. However, the emphasis of continued clinical examination training could be
applied to any area with a high medical staff turnover. Clinical examination of a neonate’s hips is a specific skill that requires a relaxed baby and an experienced clinician. Specific training for rural centres appears indicated in South Australia to minimise the late diagnosis rate.[21]

Clinicians appear to be achieving early diagnosis of DDH in cases of breech presentation and caesarean deliveries. They must, however, assume that all babies have DDH until proven otherwise, especially with our findings that normal, female, vaginal deliveries are most at risk of late diagnosis.
Acknowledgements
We gratefully acknowledge the role of the South Australian midwives, neonatal nurses, and medical practitioners in their provision of perinatal data. We also express our thanks to Kevin Priest and Graeme Tucker from the Health Statistics Unit, Epidemiology Branch of the South Australian Department of Health for matching of the perinatal data and statistical support. Our sincere thanks also goes to Heather Scott for her assistance in data retrieval, and the Department of Orthopaedic Surgery, Women’s and Children’s Hospital.

Competing interests
There were no conflicts of interest or competing interests for any of the authors of this research. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication. None of the authors received any financial support for this study.

Licence statement
The corresponding author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in Archives of Disease in Childhood editions and any other BMJPL products to exploit all subsidiary rights, as set out in our licence (http://adc.bmjjournals.com/misc/ifora/licenceform.shtml).

What is already known on this topic
- Female babies, breech presentation, primiparity along with family history are well known risk factors for early diagnosed DDH.
- Late diagnosis of DDH often leads to surgical treatment and a poorer outcome.
- There is much debate about the best method of screening for DDH, population or selected high risk groups only, ultrasound or clinical examination screening.

What this study adds
- Demonstrates how a centralised healthcare system with clinical population screening can reduce the rate of late diagnosed DDH to 0.15 per 1,000 live births.
- Highlights the risk factors for late diagnosed DDH and that they are different to those associated with early diagnosed DDH.
- Highlights the importance of vigilance in clinical examination for all babies and for repeat screening in infancy when an opportunity presents, eg at ‘well baby’ attendances; and of training and maintenance of skills for screeners. Clinicians should assume that all babies have DDH until proven otherwise.
References

Figure 1. Age at Diagnosis

Age at diagnosis (months)

Number of cases