between the healthcare provider and the woman’, ‘enabling autonomy’ and ‘avoiding a paternalistic relationship’. Greater information for OVD in antenatal classes was suggested in order to counteract a common theme of negative perceptions of an operative delivery.

Conclusion Vulnerability of the women’s feelings highlights the importance of non technical skills in ensuring a woman feels trust, is empowered and in control. These non-technical skills need to be taught, learnt and practised to ensure a woman’s experience if safe, positive and pays justice to the delight of having a child.

PL.34 A TWO YEARS AUDIT OF INCIDENCE, RISK FACTOR, MATERNAL AND NEONATAL OUTCOME OF UMBILICAL CORD PROLAPSE AT AL CORNICHIE HOSPITAL ABU DHABI UAE

T Perveen, Corniche Hospital, Abu Dhabi, United Arab Emirates

To determine the incidence, risk factors, obstetric management, maternal and neonatal outcome of umbilical cord prolapse (UCP) in order to improve the obstetric services

Methodology This is retrospective audit of all the cases of Umbilical cord prolapsed at Cornichie Hospital during January 2009 and December 2010.

Results Twenty three cases diagnosed as umbilical cord prolapse. The hospital based incidence of cord prolapse was 1:760. The mean Dignoses-Delivery Interval (DDI) was 18.5 Minutes. Eleven mothers (47.8%) delivered within this period of time. Eighty two percent women were multiparous. 86.9%were singleton pregnancies while 13.1% were (three sets) of twin gestations. Fifteen pregnancies (65.2%) were of more than 37 weeks of gestation. In 26.15% (n = 6) cases, fetuses were presented as breech. In majority of the case (n = 17) general anaesthesia was given (74%) for emergency caesarean section (LSCS) and in 4 cases (17%) spinal anaesthesia was chosen for caesarean delivery. Twenty two (95.6%) women were delivered by LSCS and one women had successful vaginal delivery after UCP.

Conclusion Cord prolapse is a rare but true obstetric emergency associated with high perinatal morbidity and mortality but with quick diagnosis and prompt multidisciplinary team management the outcome can be improved.

PL.35 OUTCOMES FOLLOWING INDUCTION OF LABOUR(IOL) IN THE EAST OF SCOTLAND

M Fawzy, V Babakumar, AE Nicoll. Ninewells Hospital and Medical School, Dundee, UK

Objectives To review delivery outcomes for IOL at Term in Ninewells Hospital Dundee and to determine whether maternal factors, indications and gestational age influence outcomes.

Methods Data were collected from all IOL at Term between 01/01/11–31/08/12. Information on outcomes was collected from the local maternity database (T orex Protos Evolution).

Results 1802/7499 (24%) had IOL. Median age was 29 years (Range = 15–48 years) and median BMI was 25.7 kg/m² (Range = 15–66 kg/m²). 1020/1802 (56.6%) were primiparous. Median gestational age was 40 weeks (Range 37–43 weeks), 664/1802 (36.8%) of IOL were for post-dates pregnancy, 280/1802 (15.5%) were for prolonged pre-labour rupture of membranes (PROM), 194/1802 (10.7%) were for hypertensive disease, 132/1802 (7.3%) were for suspected fetal growth restriction (FGR) and 106/1802 (5.8%) were for diabetes.1057/1802 (58.6%) had spontaneous vertex delivery, 560/1802 (19.9%) had operative vaginal; delivery (OVD) and 385/1802 (21.3%) had caesarean section (CS). BMI > 30 kg/m² was associated with increased risk of CS (RR = 1.23, 95%CI = 1.01–1.50, p = 0.03), and this was independent of gestational age and indication. Women who had IOL for post dates pregnancy had higher rates of CS (RR = 1.25, 95%CI = 1.05–1.50, p = 0.01) and OVD (RR = 1.28, 95%CI = 1.06–1.54, p = 0.01). Women who had IOL for suspected SGA fetus had lower rates of CS (RR = 0.51, 95%CI = 0.31–0.83, p = 0.003) Women who had IOL for FROM had lower rates of OVD (RR = 0.57, 95%CI = 0.43–0.76, p < 0001).

Conclusion The majority of women who have IOL at Term will have a vaginal delivery. Nevertheless the risk of operative intervention increases significantly in women who have IOL at 41 weeks gestation and beyond. due to IOL for post dates pregnancy. This data will be useful in counselling women requiring IOL at Term.

PL.36 CATEGORY 1 CAESAREAN SECTIONS AND DECISION TO DELIVERY INTERVAL: ARE WE MISSING TARGET?

S Mustafa, M Wickramasingham, M Abdullah, DA Jibodu. York Teaching Hospitals NHS Foundation Trust, York, UK

Background NICE guidelines recommend decision-to-delivery interval (DDI) of 30 minutes for all category 1 Caesarean Sections (Cat1 CS).

Methods A retrospective analysis of 50 Cat1 CS carried out in a busy district hospital.

Results 44% of all Cat1 CS were done for suspected fetal compromise on CTG, followed by 30% for persistent fetal bradycardia > 6 minutes. 64% deliveries happened during night shift and 54% were undertaken by junior registrars. Decision to perform Cat1 CS was directly taken by consultant in 36% of cases with consultant being first surgeon in 78% of these cases mostly as resident on-call during nights. Mean decision-to-delivery interval was 13.8 minutes with 57% deliveries performed within targeted 30 minutes. 42% of Cat1 CS were performed under general anaesthetic with shortest mean DDI of 14.5 minutes compared to spinal anaesthesia (25 minutes) and epidural top-up (16.7 minutes). 16% had massive PPH > 1.5 litres however average hospital stay was 3 days. 26% babies were admitted to SCBU with 61% being severely acidotic with cord pH < 7.0 or base excess > 12. Mean DDI in these babies was 24 minutes.

Conclusion Targeted DDI of 30 minutes is difficult to achieve in 100% of cases. Use of General anaesthesia shortens the DDI interval but has its own implications. Resident on-call consultant night shifts increase direct consultant input and may influence outcomes. A significant number of babies required admission to SCBU with proportion of acidic babies remaining high. Further measures are required to improve Decision-to-Delivery interval to improve perinatal outcomes.

PL.37 MATERNAL ADIPOSITY AND CAESAREAN SECTION

V O’Dwyer, E Kent, Hogan JIL, C O’Connor, N Farah, MJ Turner. UCD Centre for Human Reproduction, Dublin, Ireland

Maternal obesity and rising caesarean section (CS) rates are important obstetric issues. High visceral fat (VF) is associated with an increased risk of medical conditions outside pregnancy and gestational diabetes mellitus. The purpose of the study was to assess risk
of CS using VF as a marker for maternal obesity and to compare it with Body Mass Index (BMI) as a predictor.

Women were recruited following ultrasound confirmation of a singleton first trimester pregnancy. Maternal VF was measured using Bioelectrical Impedance Analysis (BIA). Maternal BMI was measured. Data was analysed using SPSS.

Of the 3000 women recruited, 2825 women subsequently delivered a baby weighing > 500 g. There were 45.9% primigravidas and 17.6% were obese. The CS rate was 21.4%. VF in the 3rd and 4th quintiles was associated with an odds ratio for CS of 1.6 (95% CI 1.3–2.1) and 2.3 (95% CI 1.7–2.1) for the 3rd and 4th quintiles for VF ≥ 0.55% incidence of PPH or identified via blood transfusion services were reviewed. Weighted sampling and chronological stepwise regression analysis were performed. Incidence was compared historically (same geographical population 1997–8) and contemporaneously (Scottish Audit 2009).

Results Incidence of PPH ≥ 1500 ml, ≥ 1500 ml and ≥ 2500 ml were 10.1% (95% CI 4.8–6.0), 4.7% (95% CI 3.3–6.1) and 0.8% (95% CI 0.6–1.0) respectively. Historical rate of PPH ≥ 1500 ml was 11.2% (95% CI 0.92–1.38). Contemporaneous PPH ≥ 2500 ml was 0.55% (95% CI 0.5 to 0.6). Risk factors for severe PPH included BMI, generally unwilling without diagnosis, anterior placenta previa, chorioamnionitis, no labour, physiological 3rd stage of labour and interval to suturing. Previous, elective and emergency caesarean section were protective.

Conclusions Severe PPH rates are rising rapidly. These demonstrated are comparable with contemporaneous UK data. Risk factors for PPH and severe PPH differ. The underlying causes originate pre-pregnancy, through pre-existing health status and previous obstetric history, some are associated with quality of care.

REFERENCES

PL.40 ACCESS TO OBSTETRIC SERVICES IN RURAL SUB-SAHARAN AFRICA: A HOSPITAL BASED SURVEY
doi:10.1136/archdischild-2013-309366.223

1RE Harris, 1UM Staffurth, 1J Irvine, 1NL Hezelgrave, 1AH Shennan. Division of Women’s Health KCL, Women’s Health Academic Centre, KHP, London, UK; 2Hospitality Teule, Muheza, United Republic of Tanzania

Background Access to Emergency Obstetric Care (EmOC) is an indicator used to monitor progress towards the achievement of Millennium Development Goals 4 and 5. Lack of access or delay in transportation to hospital is recognised as part of ‘The Three Delays Model’ and is a major barrier to accessing care for pregnant women living in rural Sub-Saharan Africa.

Objective To determine time taken (minutes) by any mode of transport, to reach an obstetric facility by pregnant women in Zambia, Tanzania and Zimbabwe.

Methods A structured questionnaire in Swahili was used to interview pregnant women from 20–42 weeks gestation who presented to hospital.

Results 750 women were interviewed on the labour ward and antenatal clinics in referral hospitals served by rural antenatal clinics in Zambia (N = 128), Tanzania (N = 246) and Zimbabwe (N = 376). Median gestation was 33.4 weeks (N = 681). 35.8% were primiparous (N = 614). The mean time taken to get home to obstetric care was 48.3 minutes (IQR = 15–60, median 30). The most common mode of transport was bus (40.6%), followed by foot (30.7%), car (19.5%), bike (9.0%) and other (0.4%) (N = 512).

Conclusion In a sample population of antenatal women who successfully reached the referral site during dry season, average time taken to travel from home to hospital was 48 minutes. In the wet season and for women in remote rural areas, this is likely to be higher. On foot, during an obstetric emergency, this may represent a significant delay. It is vital that maternal health interventions are designed to address this.

Funder Bill Gates Foundation Grand Challenges Explorations (GCE).