a fetus with Edwards syndrome. She was asymptomatic post administration of mifepristone 48 hours prior to admission. As an inpatient she was given 5 doses of misoprostol (400 micrograms) vaginally. Lack of progress necessitated 4 further doses after 24 hours break. The patient had a persistent pyrexia of above 38 degrees following 4th dose of misoprostol which was attributed to prostaglandin administration. Investigations revealed a CRP of 226 and a white cell count of 19.1. She was haemodynamically stable and used a remifentanil PCA for analgesia. In view of lack of response to Misoprostol she was rescanned revealing a bulky uterus with the fetus lying intraperitoneally with an intact amniotic sac. CT scan revealed a 6.3 cm defect in the anterior uterine wall with an intact sac projecting beyond normal uterine contour. There was no free fluid. In view of this patient had a laparotomy revealing a 6 by 5 cm defect in the anterior uterine wall lined by necrotic tissue. In view of significant amount of necrosis a decision was made to proceed with subtotal hysterectomy. We wish to highlight this rare case wherein uterine rupture occurred due to infection and uterine wall necrosis possibly secondary to amniocentesis and fetal demise. All the classical features of uterine rupture like haemodynamic instability and intraperitoneal bleeding were absent. Only a high index of suspicion leading on to further imaging helped establish the diagnosis.

PM.79 USE OF INTRAVENOUS IRON SUCROSE INJECTIONS IN THE TREATMENT OF IRON DEFICIENCY ANAEMIA IN PREGNANCY

doi:10.1136/archdischild-2013-303966.159

A Butt, M Broderick, E Ganter. Leeds Teaching Hospitals NHS Trust, Leeds, UK; University of Leeds, Leeds, UK

Background Iron deficiency anaemia (IDA) is the commonest cause of anaemia in pregnancy affecting 19% of the Leeds pregnant population. It is associated with maternal morbidity including fatigue and postpartum depression. It is also linked to adverse pregnancy outcomes including preterm delivery and intrauterine growth restriction.

Aim To assess the use of intravenous iron sucrose antenatally in women with iron deficiency anaemia who were intolerant to oral treatment and its efficacy in increasing haemoglobin levels.

Method There were 23 patients who received iron sucrose injections in the antenatal period, identified retrospectively from the antenatal day records in the Leeds Teaching Hospitals.

Results Out of 23 patients in our cohort, 9 (39%) were given iron sucrose injections after 37 weeks gestation. 2 women (9%) received the injections between 20–30 weeks. The remaining 12 patients (52%) had their injections between 31–56 weeks. The mean gestation for commencing treatment was 34 weeks. The mean cohort haemoglobin level before treatment was 8.5 g/dl which improved to 9.9 g/dl after treatment. The maximum number of doses of iron sucrose injections used was 4. None of the patients required blood transfusion post-delivery. 2 patients (9%) delivered preterm between 31–37 weeks. 20 babies (87%) were born with an average birth weight between 2.5 kg–4.0 kg.

Conclusion Iron sucrose injections are very effective in increasing the haemoglobin level antenatally in women who can’t tolerate the oral preparation or very severely anaemic.

REFERENCES