Neonatal resuscitation 1: a model to measure inspired and expired tidal volumes and assess leakage at the face mask

C P F O’Donnell, C O F Kamlin, P G Davis, C J Morley

Background: Neonatal resuscitation is a common and important intervention, and adequate ventilation is the key to success. In the delivery room, positive pressure ventilation is given with manual ventilation devices using face masks. Mannequins are widely used to teach and practise this technique. During both simulated and real neonatal resuscitation, chest excursion is used to assess tidal volume delivery, and leakage from the mask is not measured.

Objective: To describe a system that allows measurement of mask leakage and estimation of tidal volume delivery.

Methods: Respiratory function monitors, a modified resuscitation mannequin, and a computer were used to measure leakage from the mask and to assess tidal volume delivery in a model of neonatal resuscitation.

Results: The volume of gas passing through a flow sensor was measured at the face mask. This was a good estimate of the tidal volume entering and leaving the lung in this model. Gas leakage between the mask and mannequin was also measured. This occurred principally during inflation, although gas leakage during deflation was seen when the total leakage was large. A volume of gas that distended the mask but did not enter the lung was also measured.

Conclusion: This system can be used to assess the effectiveness of positive pressure ventilation given using a face mask during simulated neonatal resuscitation. It could be useful for teaching neonatal resuscitation and assessing ventilation through a face mask.

Materials and methods

Manual ventilation devices and face masks

The manual ventilation devices used at our hospital are the Neopuff infant resuscitator (Fisher & Paykel Healthcare, Auckland, New Zealand) and the Laerdal infant resuscitator (Laerdal Medical, Oakleigh, Australia). The Neopuff is a T piece device that requires a compressed gas source. It has a valve on the outlet which allows a positive end expiratory pressure to be set for a given flow rate. Occlusion of this valve generates a predetermined peak inspiratory pressure. The Laerdal Infant Resuscitator is a 240 ml Silicone self inflating bag. We routinely use round silicone Laerdal face masks (Laerdal Medical) with both devices at our hospital, and used the appropriate size mask (0/1) for the mannequin in this study.

Abbreviations: PPV, positive pressure ventilation; \(V_{\text{MASSK}} \), volume of gas that, under pressure, distends the mask but does not enter the lung; \(V_r \), tidal volume; \(V_{E\text{MASSK}} \), expiratory tidal volume at the mask; \(V_{I\text{MASK}} \), inspiratory tidal volume at the mask.
Modification of the mannequin

The Laerdal Resusci Baby mannequin (Laerdal Medical) is the most widely used resuscitation mannequin and has been found to be the most realistic for the purposes of simulated PPV. This mannequin is supplied with a bag in its “thorax”. When PPV is given appropriately, this bag inflates and slowly deflates, causing visible “chest” rise and fall. We replaced the bag with a test lung with a baseline volume of 50 ml (Draeger, Lubeck, Germany) and connected it via an airtight seal to the mannequin’s “oropharynx”, so that its inflation and deflation caused “chest” excursion similar to that of the original mannequin. A pressure monitoring line was connected immediately proximal to the test lung. The compliance of this model, calculated by measuring the inspired volume of the whole system when pressurised to 25 cm H2O, was 0.46 m/cm H2O, comparable to that of an infant with respiratory distress syndrome.

Respiratory monitor

Two Florian Respiratory Monitors (Acutronic Medical Systems, Zug, Switzerland) were used to measure gas flow. This monitor uses a flow sensor with a hot wire anemometer with minimal (<1 ml) dead space to detect gas flow. The monitor calculates the volumes of gas passing through the sensor by integration of the flow signal. The flow sensors from the two monitors were placed in series, and their volume measurement calibrated simultaneously using a fixed volume syringe. The monitors measure airway pressures directly and were calibrated against a column of water. The output from the Florian monitors was acquired using an analogue-digital converter using the Spectra software program (Grove Medical, London, UK). This is a computer program specifically designed for the acquisition and analysis of respiratory signals.

Values measured

We placed one flow sensor (FS1, fig 1) between the manual ventilation device and the face mask. With this sensor, we measured the volume of gas passing from the device through the mask—the inspiratory tidal volume at the mask (VTi(mask))—and the volume of gas returning from the mannequin through the mask—the expiratory tidal volume at the mask (VTE(mask)). We placed the second sensor (FS2, fig 1) in the mannequin’s “airway”, proximal to the test lung. With this sensor we measured the tidal volume (VT) entering and leaving the test lung.

Values calculated

If the volume of gas passing from the device through the mask exceeded that returning from the mannequin through the mask, there was a leak between the mask and the face. This was calculated as their difference expressed as a percentage of the inspiratory tidal volume at the mask:

\[
\text{leak} \, (\%) = \left(\frac{V_{Ti(mask)} - V_{TE(mask)}}{V_{Ti(mask)}}\right) \times 100.
\]

If leakage from the mask was detected, we wished to determine whether it occurred during inspiration or expiration.
We hypothesised that if the volume of gas passing from the device through the mask ($V_{TI(mask)}$) did not equal the volume returning through the mask from the mannequin ($V_{TE(mask)}$) or the tidal volume measured in the mannequin (V_T), there could be three potential reasons:

(1) Leakage during inflation. In the presence of a poor seal between the mask and face, some of the gas passing through F51 would escape during inflation and not pass through F52 at the lung. The volume leaking during inflation would thus contribute to $V_{TI(mask)}$ but not to V_T or $V_{TE(mask)}$.

(2) Leakage during deflation. In the presence of a poor seal between the mask and face, some of the gas leaving the lung through F52 would escape around the mask during deflation and not pass through F51, resulting in $V_{TE(mask)}$ understimating V_T.

(3) Distension of the mask. The mask used is made of distensible silicone; thus we hypothesised that, in the presence of a reasonable seal between the mask and face, gas under pressure would distend the mask but not enter the lung (V_{MASK}). This would pass through F51 during inflation and back through F51 during deflation, thus contributing to $V_{TI(mask)}$ and $V_{TE(mask)}$, but not to V_T. This volume was demonstrated by placing the mask flat on a bench top and giving positive pressure inflations (fig 2).

To test this system, we recorded 100 inflations, applied by a consultant neonatologist, with various amounts of leakage at the face mask, with each manual ventilation device. Inflations with a peak inspiratory pressure of 25 cm H2O were given and positive end expiratory pressure 5 cm H2O were with the NeoPuff. With the Laerdal bag a manometer was placed in the circuit and a peak inspiratory pressure of 25 cm H2O was targeted for inflations. Data were analysed using SPSS for Windows (SPSS Inc, Chicago Illinois, USA). Results are expressed as mean (SD).

RESULTS

The mannequin’s airway and lung were leak free, with a difference between the volume entering and leaving the lung of ~0.2 (0.5%). There were no significant differences in the $V_{TI(mask)}$, $V_{TE(mask)}$, or V_T delivered with each manual ventilation device.

Relationship of $V_{TE(mask)}$ to V_T

The volume returning from the mannequin through the mask ($V_{TE(mask)}$) was a good estimate of the volume leaving the lung (V_T) (fig 3). When there were large leaks (>51%), $V_{TE(mask)}$ tended to underestimate V_T because some of the gas returning from the lung escaped around the mask during deflation (see under Leak). With smaller leaks, $V_{TE(mask)}$ tended to overestimate V_T because a volume of gas distended the mask but did not enter the lung (see under Volume distending the mask and not entering the lung (V_{MASK})). Overall, $V_{TE(mask)}$ was 100.6 (24.8)% of V_T.

Leak

If the volume of gas passing from the ventilation device through the mask was greater than that returning from the mannequin through the mask—that is, $V_{TE(mask)} > V_{TI(mask)}$—there was a leak between the mask and the face. When the volume returning from mannequin through the mask ($V_{TE(mask)}$) was greater than or equal to the volume leaving the lung (V_T), all of the leak occurred during inflation.

When the volume leaving the lung (V_T) was greater than the volume returning from the mannequin through the mask ($V_{TE(mask)}$), a proportion of the leak occurred in deflation. Leaks during deflation were never seen without a leak during inflation and only seen when total leakage was greater than 51%. When there was a large leak, the proportion occurring during deflation ((($V_{TI(mask)} - V_T$)/($V_{TI(mask)} - V_{TE(mask)}$)) × 100) was 89 (10)% and the proportion during deflation ((($V_T - V_{TE(mask)}$)/($V_{TI(mask)} - V_{TE(mask)}$)) × 100) was 11 (10)%.

Volume distending the mask and not entering the lung (V_{MASK})

When the volume passing from the device through the mask ($V_{TI(mask)}$) equated the volume returning from the lung ($V_{TE(mask)}$), there was no leakage from the mask. During these inflations, V_{MASK} was readily demonstrated, as the volume passing through F51 was greater than that passing through F52 and entering the lung. Although this became progressively smaller as the total leak increased, V_{MASK} was seen with leaks up to 51%. This volume was 2.4 (1.4) ml, which represented 18.3 (10.5)% of V_T.

DISCUSSION

Positive pressure ventilation using manual ventilation devices via a face mask is an important skill. It is widely taught and practised using mannequins. We have developed a system that allows estimation of tidal volume delivered and measurement of mask leak during simulated PPV. The pressures used may also be recorded using this system. This system was developed with a view to recording real resuscitations in the delivery room.

Studies of PPV through a mask during resuscitation in the delivery room are few. In a study of term infants, “bag and mask” ventilation seemed relatively inefficient, with tidal exchange substantially less than that seen after intubation and rarely sufficient to produce adequate alveolar ventilation. It is worth noting that the apparatus used to measure expired tidal volumes in this study and other assessments of bag and mask ventilation was similar to ours, in that the flow sensor (pneumotachograph) was placed between the manual ventilation device and mask. Although the mask used for these studies differed from ours and its properties are probably not identical, there was leakage from this mask during inflation. It is thus reasonable to speculate that there may also have been leakage during expiration. It is unclear how the expired tidal volume reported (equivalent to our $V_{TE(mask)}$) related to the expired tidal volume leaving the lungs.

![Figure 3](https://www.archdischild.com)
It remains unclear how effective bag and mask ventilation in the delivery room is as a means of delivering a satisfactory tidal volume, particularly in preterm infants, for which there are no reported studies. Moreover, this technique is not without its complications; bradycardia caused by application of a mask during neonatal resuscitation has been reported. Detailed studies of the efficacy of PPV through a face mask in newborn infants are needed, particularly in preterm infants. Applying a flow sensor between the manual ventilation device and face mask in the delivery room may give valuable insights into the effect of PPV on newborn infants during resuscitation.

CONCLUSIONS
We have developed a system for practising and assessing PPV using a face mask. In this model, the volume of gas returning through the face mask from the mannequin is a good estimate of the volume leaving the lungs in this model.

ACKNOWLEDGEMENTS
CPFO’D is in receipt of the Royal Women’s Hospital Postgraduate Degree Scholarship. PGD is supported by a National Health and Medical Research Council Fellowship. We thank Dr Brendan Murphy and an anonymous reviewer for helpful comments that have considerably improved this paper.

REFERENCES