A manual of neonatal intensive care, 4th edition


As an SHO, I bought the first edition of the Manual in 1982. It was a survival guide which provided safe certainties in the small hours of the night. It was small, light, and compact. There was no competition; the Roberton Manual was the book to have!

Nearly 20 years on, where has the 4th edition taken us? Bigger, certainly: a behemoth of a “small” manual with 550 pages. Not much taller or wider than its predecessors, but much thicker, the rather thin and closely typeset pages distinctly reminiscent of a Bible. Thirty four chapters and eight appendices. There’s an awful lot of information in here.

Road testing a book like this is quite a challenge. Clearly one should not ask it to perform in a manner for which it was not designed, and the authors helpfully explain in the preface that their aim “is to provide a guide for the management of the acute medical and surgical problems a resident is likely to encounter on a modern neonatal intensive care unit.” So I went for chapter 1, expecting it to plunge in where every resident is most nervous: resuscitation of the newborn.

Instead, I got “Organization of neonatal care”. Admittedly it is only six pages, but does a resident really need this in a practical manual? Especially since the big Roberton textbook is likely to be on hand in most neonatal units to provide this and much more detail on this subject. In the Manual, you have to wait until chapter 6 to get “Resuscitation”, with “Temperature control”, “Fluid & electrolytes”, “Enteral nutrition and parenteral nutrition”, all packed with science and phytology, coming first. How much physiology do you want or need in a practical manual? Not much, I think.

So I tried again with the oxygenation index (OI). There must be many units where the OI is used as a pragmatic threshold for giving nitric oxide or high frequency oscillation, and of course for referencing for extracorporeal membrane oxygenation (ECMO). The resident will want to find the page with the formula for calculating OI, and how to deal with mm Hg versus kPa for the oxygen tension. To the index then—but no entry for oxygenation index. To the glossary of abbreviations at the front: there, sure enough, is OI. But where is it in the text? I could not find it under PPHN, or RDS, or ventilation. Eventually, by close reading, I found it mentioned under Meconium aspiration, and also under ECMO, but nowhere could I find the formula for calculating it. From this time, the luckless resident will have been called away to the next emergency, and also look ahead to the future strategies in which neuroscientific advances may translate into plausible clinical strategies—for example, promoting the regrowth of damaged axons from intact cortical neurones across an area of periventricular leucomalacia. The expenditure of £30 rewards the reader with more than 300 pages which are clear and well arranged. Tables and flow diagrams are easy to dip into. More senior readers may be frustrated that the book is not referenced, but recommended reading is provided at the end of each chapter.

Three small criticisms and suggestions for the next edition:

- The chapter entitled “Drugs and the neonate” is too short. The figure referring to biochemical and haematological monitoring cites only 11 drugs, ignoring commonly used drugs such as vecuronium, insulin, surfactant, salbutamol, 5-fluorouracil, and steroids. Even those lucky 11 have curious omissions—for example, the oliguria and fluid retention associated with indomethacin.
- Secondly the book recurrently ignores the unusual demands of the extreme preterm infant—for example, diluational exchange for polycythemia is said to be carried out in 10 ml aliquots, and does not recommend smaller volumes. The fluid of 500 g whose total blood volume may be little more than 40 ml.
- Thirdly the section on viral disease and transmission should be more detailed. “Low risk” is not quantitated, and CMV is described variously as a “largely inactivated by freezing” and (one page later) “does not survive freezing”—an inconsistency that leaves the reader feeling insecure about such an important safety issue.

Nevertheless this is a volume that is informative and attractive, from the cartoon of a neonate’s head (front cover) to the photograph of the three distinguished and pathologically careful authors at the end. For all professional staff there are 300 pages of clear descriptions containing information that will prove useful in organising investigations in the neonatal unit. There are also modern data which can be used to defend the embattled SHO against the emboldened consultant roundward. Every neonatal unit should purchase a copy. I predict that these valuable pages will be well thumbed within a month. I look forward to a further edition, and hope that it will extend its scope to include other laboratory disciplines such as genetics and electrophysiology. The three authors deserve success with this winner.


Neonatology & laboratory medicine

M P Ward Platt

Neonatal Service, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK; m.p.ward-platt@ncl.ac.uk

Fetal and neonatal brain injury: mechanisms, management and the risks of practice, 3rd edition

I A Laing

Simpson Centre for Reproductive Health, 51 Little France Crescent, Edinburgh EH16 4SU, Scotland, UK; ian.laing@uhhscot.nhs.uk


Brain injury remains a common theme in a large proportion of survivors of extreme prematurity and/or neonatal encephalopathy. The headline rates of significant disability have been largely unchanged despite the enormous advances in neonatal intensive care of the post-surfactant era, and more subtle educational difficulties are later declared in many others. It is essential that clinicians continue to strive for a deeper understanding of the mechanisms of brain injury to not only guide conventional management, but also look ahead to the future strategies in which neuroscientific advances may translate into plausible clinical strategies—for example, promoting the regrowth of damaged axons from intact cortical neurones across an area of periventricular leucomalacia.

The strength of a textbook such as this is to give an in depth overview of many aspects of brain injury. This is accomplished well by a distinguished list of mostly United States based contributors, who consider the many aspects of neonatal brain injury in terms of aetiology, epidemiology, diagnosis, management, and...
Thickening milk feeds may cause necrotising enterocolitis

Extremely low birthweight infants have the highest risk of developing necrotising enterocolitis (NEC). We report on two infants who developed fatal NEC while established on enteral feeds. A common antecedent was recent treatment with Carobel. An 820 g boy and a 752 g girl, both of 25 day 12 and 18 respectively. Non-specific symptoms were attributed to gastro-oesophageal reflux (GOR). Thickening feeds with carob bean gum is of current use in preterm infants. Its unlicensed status in the United Kingdom. The manufacturer advises that it should prove to be a useful reference for specialists in this field.

References


Vertical transmission of *Citrobacter freundii*

An infant developed early respiratory distress after delivery at 34 weeks gestation after prolonged rupture of membranes. *Citrobacter freundii* was cultured from a maternal mid-stream urine sample at delivery. *C. freundii* is resistant to ampicillin but sensitive to gentamicin, cephalosporins, and ciprofloxacin, was isolated from neonatal blood cultures taken on admission. Gram negative rods were seen on microscopy of cerebrospinal fluid (CSF), with no white cells and 730 red cells per high power field. CSF protein was 1.26 g/l and glucose 3.0 mmol/l, with blood glucose of 4.9 mmol/l. No organisms grew on CSF culture. Ampicillin and gentamicin were discontinued, and ciprofloxacin and cefotaxime started for a three week course. Serial cranial ultrasound and computed tomography scans showed no evidence of intracranial abscess or ventriculitis. At 1 year of age the infant is neurodevelopmentally normal.

Neonatal infection with *Citrobacter freundii* species is usually acquired in a nosocomial fashion, and causes sepsis, meningitis, and brain abscesses associated with a high morbidity and mortality. Eleven cases of vertically acquired *Citrobacter koseri* infection have been reported. However, the only previous report of vertical transmission of *C. freundii* describes a 32 week infant in whom the organism was identified from maternal high vaginal swab and infant gastric aspirate, but not from blood cultures. Neonatal sepsis has been reported in our patient, has not been described.

*C. freundii* differs from other organisms causing neonatal meningitis by being able to...
Recruitment failure in early neonatal research

Rates of neurodevelopmental handicap are high among extremely low birthweight survivors, and the first 48 postnatal hours probably give the greatest opportunity for preventing damage. However, at this time, families are in turmoil and may have difficulty in coming to terms with a small baby in intensive care. We recently had to abandon an observational, non-invasive study because of practical difficulties arising from the new Research Governance Framework, and we would like to share this experience, and its implications, with the research community.

We needed parental consent for the study, which had local research ethics committee approval. Babies had to be < 1500 g birth weight, > 25 weeks gestation, < 48 hours old, ventilated, with an arterial line, and no prior intervention for circulatory compromise. The last two requirements meant that, in reality, babies had to be recruited within the first 12 hours. A non-invasive measure of peripheral oxygen consumption appears to be confined to late onset disease, with possible explanations being the early use of antibiotics, and absence of a putative virulence factor.

The combination of cefotaxime and an aminoglycoside is recommended for neonatal Gram negative meningitis, but CSF concentrations of gentamicin may only be marginally above the minimum bactericidal concentration of Gram negative organisms.

Ciprofloxacin has been shown to be effective in Gram negative meningitis, and should be considered in the treatment of this condition.

References


Figure 1 Recruitment to research project on neonatal unit (NNU) over 12 month period.

With additional local research ethics committee permission, we tried to recruit women at high risk of delivering before term from 25 weeks gestation. The consent process was more complex in this group, as the explanation had to include information about standard neonatal care and procedures. Parents in this group were given 24 hours to come to a decision. Figure 1 shows that, of 28 eligible babies, only five were recruited. Eight out of nine mothers approached antenatally gave consent, but only two of their babies were studied, as three did not meet the entry criteria and the other three were born elsewhere.

What went wrong? Since the Griffiths report,


Gestational age in the literature

In neonatology, the correct gestational age (GA) is extremely important, as the viability and survival of the premature baby depend on it. A difference of a few hours or a day can have a substantial impact on the survival and long term morbidity of premature babies.

Doctors are trained to report the GA of a premature baby in exact days—for example, 26 weeks (GA = 26 completed weeks and 4 days). Reporting the GA in this format helps in understanding and assessing the postnatal and maturational age of premature babies. One would therefore expect GA to be reported exactly in the literature, especially in articles, studies, and trials dealing with survival and morbidity in premature babies.

In fact, descriptions of GA are extremely ambiguous in most articles. An example of this ambiguity is survival at 26 weeks GA is

www.archdischild.com
interpretation. It could mean 25 +26.1 This description of GA is open to interpretation. It could mean 25 +26.1 to 26 +26.1. Every extra day improves the survival of the premature baby by 2%. Therefore, for the above GA, survival could change by 12% on either side of 26%. This could have a large effect not only on survival but also on long-term morbidity.

Many large studies and articles published on survival, viability, and ethical issues of resuscitation in extremely premature babies have used this ambiguous description of GA. The EPICure study is a good example of a landmark, full study that uses the ambiguous description of GA.1 Such large studies have a major impact on doctors and parents, as the results and interpretation are used by neonatologists for counselling, teaching, and research.

For those dealing with ethical issues, especially resuscitation in extremely premature babies, exact GA can be of immense help.2, 3 As the limits of viability and survival are stretched, doctors need to be very clear in their minds about the exact age of the premature baby.

In view of the above, we propose that the reporting of GA in the literature should be uniform. It should be described in exact days—that is, weeks.5

References


Fever in the neonatal period

This is in reference to the recent article by Maayan-Metzer et al.1 The clinical implication of the study is questionable. It is difficult to make a prospective decision on retrospective data. What should a clinician do if a febrile asymptomatic 3-day-old baby has a fever of 37.9°C? There is no problem in labelling the infant as having non-specific fever, which may be due to dehydration. The problem is to decide on the treatment. Unfortunately, the study in question not only lacks that information but also supports treatment with antibiotics. This inference is drawn from the results of the study, stating that 108 of 122 healthy asymptomatic babies (that is, 89%) were treated with antibiotics.

In five years (January 1997 to December 2001), 122 cases were identified with fever giving a rough figure of 25 febrile cases in one year—that is, about two cases a month. A prospective follow-up of these febrile neonates after separating them into two groups, one receiving antibiotics (treatment group) and the other not (observation group) carried out in an ethical way, would be more informative for clinical decision making.

Merely adding the risk factors in the list of possible causes for fever in neonates without solution or how one should deal with it is of very little clinical worth. It would be very brave of a paediatrician not to treat neonatal fever with antibiotics on the basis of the inference drawn from this study, but would it be wise and safe? These are the questions we should be struggling to answer.

I have reservations about the authors’ “standard work up protocol”. A cerebral spinal fluid analysis on asymptomatic, otherwise healthy neonates with fever is probably unwarranted. I think it is unwise to perform a spinal tap on a baby with suspicion of dehydration fever. In other words, if one suspects meningitis in a neonate, it is not fair to withhold antibiotics.

About the treatment protocol, the authors treated 107 infants with antibiotics unnecessarily; only one had a positive culture. This approach of empiric antibiotic use needs critical appraisal in the protocol of the institution.

Fever without symptoms is not uncommon in healthy, full term babies in the postnatal ward. To carry out a prospective study on these babies would be feasible. There are two issues that need clarification, how to investigate and how to treat. I do not think that there is much controversy about investigating a febrile neonate. With the present knowledge, any febrile neonate without fever, irrespective of symptoms, should be investigated appropriately with full blood count and blood and urine cultures. It is the treatment that is the root of the controversy and needs further evaluation. However, in view of the present study, in spite of a promising conclusion, fever in healthy neonates should not be treated as something benign and dealt with casually.

Having said all this, I appreciate the methodology of the study and the authors’ endeavour to look further into the issue of fever in neonates. I hope my suggestion will encourage the authors to look further into the issue of fever in neonates. In view of the above, we propose that the reporting of GA in the literature should be uniform. It should be described in exact days—that is, weeks.5, 6

Home phototherapy in the United Kingdom

Although successful home treatment of neonatal jaundice using fibre-optic phototherapy units has been reported elsewhere,7, 8 we are not aware of any such provision in the United Kingdom. We have introduced a regional home phototherapy programme in Tayside, Scotland and wonder if our initial experience would be of interest to others.

Before introducing the service, hospital and community midwives undertook training covering inclusion criteria (physiological jaundice in well, term infants), the treatment protocol, equipment (wavelength, unit size), and the assessment of parental competence. The protocol conditions were: a daily capillary serum bilirubin (SBR), discussing all results with a paediatrician; basing treatment on SBR and not the infant and an SBR measured after discontinuing phototherapy. Parents underwent a one hour “training” session (equipment use and advice on feeding, skin care, and temperature control) and were given written advice. Tayside Committee on Medical Research Ethics advised that ethical approval for the programme and written consent were not required, as the treatment being offered was not novel.

Between February and August 2002, 28 families were offered home phototherapy in Tayside: six refused (difficulties with feeding, distance from home to hospital, and parental choice). The mean birth weight was 3245 g (range 2240–4220), with a median gestation of 38 weeks (range 35–41). Mean maternal age was 30 years (range 17–41). Twenty (91%) infants were breast fed. Ten were first born. Seven families lived in affluent areas and two in areas of high deprivation.7 Phototherapy started at a median age of 5.5 days (range 1–13). Eight infants received all their phototherapy at home. Mean treatment duration was 47.3 hours (range 17.5–97.0) with a median decrease in SBR of 16 μmol/l per day (range from a fall of 50 μmol/l to a rise of 53 μmol/l in one case). Community midwives spent about 60 minutes on the first home visit. Subsequent visits were shorter. Poor compliance, without compromise to either infant, was identified in two families and rectified quickly. No other adverse incidents were reported, and there was no equipment failure. All parents preferred home phototherapy to inpatient treatment. Community midwives have been happy to continue the programme.

We believe this is the first report of a home phototherapy programme in the United Kingdom. With appropriate training and enthusiastic community support, it appears to be feasible, safe, and well accepted by families and staff. We would encourage others to consider establishing such programmes.

We are grateful to the rest of the Tayside Home Phototherapy Project Team (J Dalzell, A Jarvis, M Meldrum, V Samson) and the community midwives who contributed to the success of the project. This project was supported by a grant from the Scottish Executive Health Department – Innovative Fund for Children’s Services.

Home phototherapy in Tayside

M Walls, A Wright, P Fowlie

Neonatal Intensive Care Unit, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK

L Irvine

Department of Epidemiology, University of Dundee, Ninewells Hospital and Medical School

R Hume

Maternal and Child Health Sciences, University of Dundee, Ninewells Hospital and Medical School

Correspondence to: Dr. Fowlie; peter.w.fowlie@tuft.scot.nhs.uk
doi: 10.1136/adc.2003.039735

References


www.archdischild.com