Phototherapy with turquoise versus blue light

F Ebbesen, G Agati, R Pratesi

Preterm jaundiced infants were treated by phototherapy with a new turquoise fluorescent lamp. This was more effective in reducing plasma total bilirubin in relation to light irradiance than the ubiquitously used blue fluorescent lamp.

Phototherapy is the most widespread treatment for lowering bilirubin concentration in neonates. Blue fluorescent lamps with emission peak wavelength matching the absorption maximum of the plasma bilirubin–albumin complex at 460 nm have been used successfully in phototherapy, in particular the Philips F20WT12/B8 special blue lamp with peak emission at 446 nm and the Philips 20WTL/52 blue lamp with peak emission at 452 nm and spectral width (width at half maximum) of 55 nm.

An increase in phototherapeutic efficiency was predicted for lamps with emission peak at about 490 nm. Thus, non-standard, cold cathode fluorescent lamps emitting at 490 nm were developed and clinically tested with successful results. Then new turquoise (blue-green) standard fluorescent lamps were made by Osram, with emission peak at 490 nm and bandwidth of 65 nm.

In this study, the phototherapeutic efficiencies of the turquoise and Philips/52 blue lamps are compared.

METHODS

The study period was 1 November 2000 to 31 December 2001. The inclusion criteria were preterm infants with a gestational age of 196–258 days, a postnatal age of > 24 hours, and non-haemolytic hyperbilirubinemia. The infants participated in the study for 48 hours.

Phototherapy was administered continuously, except during feeding, nursing care, and blood sampling. Treatment took place in either an incubator or a bassinet. The distance from the phototherapy apparatus to the surface of the infants was about 32 cm.

The infants were randomised to one of two regimens: six of the turquoise fluorescent lamps (18W) plus two daylight fluorescent lamps (Philips TL-D18W/96) to reduce inconvenience caused to staff; or six blue fluorescent lamps (Philips TL-D18W/96) to reduce inconvenience caused to staff members between turquoise and blue light (p > 0.05; Mann-Whitney U test). Most had no preference for either type of light. If they had a preference, there was no significant difference between the turquoise and blue light.

As the light irradiance of the treatment with turquoise light was about three quarters of that with blue light and the reduction in plasma bilirubin concentration was the same in the two groups, the phototherapeutic efficiency of the new lamps is considerably higher (30%). This is consistent with the most efficient spectral emission predicted and confirms previous preliminary results.

There were no significant differences in the inconvenience to staff members between turquoise and blue light (p > 0.05; χ² test). Most had no preference for either type of light. If they had a preference, there was no significant difference between the turquoise and blue light.

The results of our investigation indicate that the new Osram turquoise fluorescent lamps and the Philips/52 blue lamps are equally convenient to use for the treatment of jaundiced neonates. However, the turquoise lamps are preferable because of the more efficient reduction in plasma bilirubin concentration in relation to light irradiance and the less severe side effects, such as mutagenic and photodegradation processes.

Total serum bilirubin concentration was measured with a Vitros 950 analyser on capillary blood drawn by heel prick. The haemolytic hyperbilirubinaemia. The infants participated in the study for 48 hours.

RESULTS AND DISCUSSION

The characteristics of the infants treated with turquoise light (n = 42) compared with those of the infants treated with blue light (n = 43) were: birth weight (g) (median (range)), 1853 (951–3225) vs 1940 (845–3550); gestational age (days) (median (range)), 229 (198–258) vs 235 (198–255); sex female/male (number), 17:25 vs 21:23; respiratory distress syndrome (number), 13 vs 10; infants suspected of infection (number), 3 vs 2; incubator/bassinet (number), 28:14 vs 29:14; age at start of phototherapy (hours) (median (range)), 74 (25–234) vs 69 (37–260); percentage of study period in phototherapy (median (range)), 86 (68–100) vs 82 (69–100).

Figure 1B,C shows the decrease in total serum bilirubin concentration during phototherapy. No significant difference in the decrease after 48 hours of treatment was found between infants treated with turquoise light and blue light (p = 0.36; Mann-Whitney U test).

No side effects were observed except for loose green stools. Light irradiance values (mean (SD)) for the turquoise, blue, and daylight lamps at the body surface were 2.72 (0.25), 3.52 (0.33), and 0.56 (0.07) mW/cm² respectively.

The fall in light intensity over 1000 hours of operation was similar for the turquoise and blue lamps (11% and 14% respectively).

As the light irradiance of the treatment with turquoise light was about three quarters of that with blue light and the reduction in plasma bilirubin concentration was the same in the two groups, the phototherapeutic efficiency of the new lamps is considerably higher (30%). This is consistent with the most efficient spectral emission predicted and confirms previous preliminary results.

There were no significant differences in the inconvenience to staff members between turquoise and blue light (p > 0.05; χ² test). Most had no preference for either type of light. If they had a preference, there was no significant difference between the turquoise and blue light.

The results of our investigation indicate that the new Osram turquoise fluorescent lamps and the Philips/52 blue lamps are equally convenient to use for the treatment of jaundiced neonates. However, the turquoise lamps are preferable because of the more efficient reduction in plasma bilirubin concentration in relation to light irradiance and the less severe side effects, such as mutagenic and photodegradation processes.

www.archdischild.com
associated with light of longer wavelength. Further improvement is expected from the introduction of lamp phosphor with narrower spectral emission in the blue-green spectral region.

ACKNOWLEDGEMENTS
We thank Osram, especially Dr M Zachau, for providing the turquoise lamps.

Authors’ affiliations
F Ebbesen, Department of Pediatrics, University Hospital of Aalborg, Denmark
G Agati, Institute of Applied Physics-CNR, Sezione INFM di Firenze, Florence, Italy
R Pratesi, Dipartimento di Fisica, Università di Firenze, Sezione INFM di Firenze

REFERENCES