Probiotics for preterm infants?

M Millar, M Wilks, K Costeloe

Infants nursed in special care baby units develop an abnormal pattern of microbial colonisation, which may contribute to disease. Enteric feeding of live microbial supplements (probiotics) may provide benefit to such infants and help to prevent diseases such as neonatal necrotising enterocolitis.

Although there is now a considerable body of experimental data and a burgeoning clinical trials literature, so far there have been few adequately controlled clinical trials of probiotics in preterm infants. There is a clear need for clinical trials of sufficient size to allow clinically important outcomes to be investigated.

Healthy infants develop a colonising microflora which is dominated in the bowel by non-pathogenic species such as bifidobacteria. The early pattern of microbial colonisation probably contributes to normal development through a number of different pathways. These include enhancement of the mucosal protective barrier, modification of systemic immune responses, competitive exclusion of less desirable microbes, protein and carbohydrate degradation, vitamin and butyrate production, and perhaps also mucosal differentiation. The pattern of development of the bowel flora results from a complex interplay of nutritional, immunological, and environmental factors. It is generally accepted that the predominance of some bacteria such as bifidobacteria are beneficial and others such as enterobacteriaceae, Pseudomonas aeruginosa, and clostridia are detrimental.

“Probiotic bacteria are defined as live microbial supplements that colonise the gut and provide benefit to the host.”

One way to encourage bowel colonisation with “desirable” flora is through the administration of probiotic bacteria. Probiotic bacteria are defined as live microbial supplements that colonise the gut and provide benefit to the host. There is increasing interest in the potential health benefits that may be derived from proactive management of bacterial colonisation of the gastrointestinal tract in preterm infants. The concept that the bacteria that live within us may be important determinants of health and disease was proposed by Metchnikov and popularised by Douglas. Since these early publications, an increasing body of scientific literature has lent credence to the view that bacterial flora modification may improve health. Many studies in both laboratory and farm animals suggest that probiotic feeding can provide benefits. Feeding of live microorganisms has led to developments in animal husbandry such as a reduction in the colonisation of chickens with Salmonella enteritidis phage type 4.

The range of effects of probiotics on the gut are wide and include changes in intestinal permeability, enhanced mucosal IgA responses, increases in the production of anti-inflammatory cytokines, and “normalisation” of gut microbiology (Box 1). There is an increasing body of evidence from clinical trials that feeding of live microbial supplements can

Arch Dis Child Fetal Neonatal Ed 2003;88:F354–F358

See end of article for authors’ affiliations

Correspondence to:
Dr Millar, Department of Medical Microbiology, Barts and The London NHS Trust, 37 Ashfield Street, Whitechapel, London E1 1BB, UK; michael.millar@bartsandthelondon.nhs.uk

Accepted
12 October 2002

www.archdischild.com
provide nutritional and immunological benefits for humans, such as the prevention of recurrent *Clostridium difficile* infection and reduction in the duration of rotavirus diarrhoea. These observations have led to suggestions that bacteria contribute to the pathogenesis of NEC.

There is increasing interest and some evidence that probiotics may have a role in the control or prevention of inflammatory bowel disease. Numerous clinical trials in children and adults have lent support to the view that probiotic administration can modify the severity of inflammatory bowel disease. The range of organisms used has been very wide, from single widely characterised strains such as *Escherichia coli* strain Nissle, which has been used since 1917, to recent studies using complex mixtures of bacteria. As the scientific basis for the use of probiotics is established, it is likely that genetically engineered probiotics modified to produce specific properties will be increasingly used for the control of inflammatory bowel disease. Thus, Steidler and coworkers showed that a genetically engineered probiotic bacterium delivering interleukin 10 reduced colitis in two different experimental mouse models. Box 3 shows potential mechanisms by which probiotics may prevent NEC. Enteral administration of probiotics has been shown to prevent NEC in a neonatal rat model using *Bifidobacterium infantis*. The potential for use of probiotics in the treatment of established NEC remains unexplored.

STUDIES OF THE USE OF PROBIOTICS IN PRETERM INFANTS

There have been few clinical trials that have reported the outcomes for preterm infants given probiotics. Early comparative studies concentrated on the safety and colonisation potential of probiotics in this population and the impact of feeding probiotic bacteria on the enteric microflora of infants. More recent studies have looked at different outcomes including NEC (see below), enteral feed tolerance and weight gain, and serum endotoxin levels. Most of these studies have involved small numbers of infants nursed in a single neonatal intensive care unit. Placebo preparations have not been included in most studies; instead outcomes in infants given supplemented and unsupplemented feeds have been compared. One of the largest studies reported improved weight gain and food tolerance when *Bifidobacterium breve* strain BBG was given to preterm infants. The antibody response in preterm infants given streptococcal vaccines was greater than in controls, and there was higher IgA antibodies to recent *E coli* strains in the test group, as was non-specific IgM. Infection and use of antibiotics was included as an outcome in an open randomised study in which 50 infants received a bifidobacterium strain (*Toyotzer bifidus*) nasogastically from day 3 to 21 and were compared with a control group. Those given bifidobacteria were more likely to be colonised with bifidobacteria than the control group, and received antibiotics for longer. However, in only one of 23 episodes of sepsis was a bifidobacterial predominance found on the day of onset of the episode, suggesting that bifidobacteria may confer a protective effect. In a recent multicentre double blind study from Italy, 585 infants of less than 33 weeks gestational age or birth weight less than 1500 g were randomised to receive *Lactobacillus rhamnosus* GG (6 x 10^9 colony forming units) once a day from the start of feeds to the time of discharge, or a placebo. Outcome measures included the incidence of urinary tract infection, bacterial sepsis, and NEC. The numbers of babies with any of the three outcomes were surprisingly low, and there were no significant differences between the probiotic and placebo groups. The report gives no microbiological data on colonisation with *Lactobacillus GG*, and more than half of the infants received more than one course of antibiotic, so the extent to which infants were colonised and the relation between outcomes and colonisation cannot be examined. A "non-pathogenic" strain of *S aureus* (strain 502A) was used as...
a spray to control outbreaks of staphylococcal infection in the USA during the 1960s. Over 4000 infants were colonised. This procedure was associated with control of a number of nursery outbreaks of staphylococcal infection. Perinatal infection was described in a number of infants, and one infant suffered a serious adverse event.

There have been no randomised, placebo controlled, blinded studies of probiotics of sufficient size to determine the impact of probiotic feeding on incidence of NEC. In an open study from South America, a reduction in the incidence of NEC was reported in infants in a neonatal intensive care unit after the introduction of enteral feeding with Lactobacillus acidophilus and B infantis by comparison with historical controls.

THE FUTURE

Many different species of bacteria and fungi have been used as probiotics. Even within a species such as E coli or Staphylococcus aureus, there are probiotic and pathogenic strains, so the range of potential probiotics is enormous. Currently we do not know which microbial characteristics are desirable for particular groups of patients. Selection of strains for use in clinical trials is based on microbial characteristics such as ability to survive gastric acid and colonise the gut, production of factors that inhibit the growth of pathogenic bacteria (such as H2O2 by lactobacilli), and other desirable (generally metabolic or immunological) effects. Often, but not always, strains that are selected for human study have been extensively studied in laboratory animals. It is generally considered that a predominance of bifidobacteria in the gut of infants is desirable, but we do not know if the primary objective is to inhibit colonisation of the gut by undesirable pathogens or to promote colonisation with “healthy” bacteria, or both.

Nor do we know how to optimise colonisation with probiotics. Prebiotics, such as oligofructose for bifidobacteria, encourage proliferation of specific bacteria in the gut. Prebiotics can be used by themselves or in combination with probiotics. Probiotics tend to be selected for antibiotic susceptibility, but, in patient populations in which antibiotics are often used, perhaps the choice and mode of administration of antibiotics will have to be modified to facilitate probiotic colonisation.

Currently many different preparations containing live probiotic bacteria are available as foodstuffs from commercial outlets and are being given to patients both within and without the context of clinical trials. Probiotics are considered to be foods and are not subject to the stringent controls that are applied to licensed drugs. There is an increasing trend for probiotics to be administered to a variety of patient groups including preterm infants for a variety of reasons. Currently there is a paucity of data on their safety or efficacy in preterm infants.

CONCLUSION

“Normalisation” of the bowel flora of preterm infants to make it more like that of a healthy breast fed infant may or may not produce clinical benefits. There are few published safety data on probiotic use in preterm infants. The ideal characteristics of probiotic strains to be used in preterm infants have yet to be defined. Probiotics may offer potential benefits for preterm infants, but there is a need for clinical trials of sufficient size to allow clinically important outcomes to be investigated.

Authors’ affiliations

M MILLAR, Department of Medical Microbiology, Barts and The London NHS Trust, 37 Ashfield Street, Whitechapel, London E1 1BB, UK

M WILKS, Department of Medical Microbiology, St Bartholomew’s Hospital, Barts and The London NHS Trust, West Smithfield, London EC1A 7BE, UK

K COSTELOE, Academic Department of Child Health, Barts and the London School of Medicine and Dentistry, Homerton University Hospital, Homerton Row, London E9 6SR, UK

REFERENCES

Probiotics for preterm infants

12 Hoy CM. The role of infection in necrotizing enterocolitis. Reviews in Medical Microbiology 2001;12 121–9.

24 Brandt CD, Mawson CR. A barrier is a better defense: effects of probiotics on intestinal barrier function. Inflamm Bowel Dis 2002;8:67–9.

Clinical Evidence—Call for contributors

Clinical Evidence® is a regularly updated evidence based journal available worldwide both as a paper version and on the internet. Clinical Evidence® needs to recruit a number of new contributors. Contributors are health care professionals or epidemiologists with experience in evidence based medicine and the ability to write in a concise and structured way.

Currently, we are interested in finding contributors with an interest in the following clinical areas:

- Altitude sickness
- Autism
- Basal cell carcinoma
- Breast feeding
- Carbon monoxide poisoning
- Cervical cancer
- Cystic fibrosis
- Ectopic pregnancy
- Grief/bereavement
- Halitosis
- Hodgkin’s disease
- Infectious mononucleosis (glandular fever)
- Kidney stones
- Malignant melanoma (metastatic)
- Mesothelioma
- Myeloma
- Ovarian cyst
- Pancreatitis (acute)
- Pancreatitis (chronic)
- Polymyalgia rheumatica
- Post-partum haemorrhage
- Pulmonary embolism
- Recurrent miscarriage
- Repetitive strain injury
- Scoliosis
- Seasonal affective disorder
- Squint
- Systemic lupus erythematosus
- Testicular cancer
- Varicocoele
- Viral meningitis
- Vitiligo

However, we are always looking for others, so do not let this list discourage you.

Being a contributor involves:

- Appraising the results of literature searches (performed by our Information Specialists) to identify high quality evidence for inclusion in the journal.
- Writing to a highly structured template (about 2000–3000 words), using evidence from selected studies, within 6–8 weeks of receiving the literature search results.
- Working with Clinical Evidence® Editors to ensure that the text meets rigorous epidemiological and style standards.
- Updating the text every eight months to incorporate new evidence.
- Expanding the topic to include new questions once every 12–18 months.

If you would like to become a contributor for Clinical Evidence® or require more information about what this involves please send your contact details and a copy of your CV, clearly stating the clinical area you are interested in, to Claire Folkes (cfolkes@bmjgroup.com).

Call for peer reviewers

Clinical Evidence® also needs to recruit a number of new peer reviewers specifically with an interest in the clinical areas stated above, and also others related to general practice. Peer reviewers are health care professionals or epidemiologists with experience in evidence based medicine. As a peer reviewer you will be asked for your views on the clinical relevance, validity, and accessibility of specific topics within the journal, and their usefulness to the intended audience (international generalists and health care professionals, possibly with limited statistical knowledge). Topics are usually 2000–3000 words in length and we would ask you to review between 2–5 topics per year. The peer review process takes place throughout the year, and our turnaround time for each review is ideally 10–14 days.

If you are interested in becoming a peer reviewer for Clinical Evidence®, please complete the peer review questionnaire at www.clinicalevidence.com or contact Claire Folkes (cfolkes@bmjgroup.com).