Weighing alone will not prevent hypernatraemic dehydration

Having recently reviewed the case notes of babies readmitted to hospital in the first 10 days of life (over a one year period), we firmly agree with the views expressed by Laing and Wong.1 The incidence of documented hypernatraemic dehydration secondary to the failure of lactation in Bristol is 1.7 per 1000 live births much higher than that described by Oddie et al in the Northern Region (2.5 per 10 000 live births).2 In addition only 50% of infants readmitted with weight loss of <10% had a plasma sodium concentration measured. The true incidence of hypernatraemic dehydration secondary to lactation problems in Bristol could thus be as high as 3.4 per 1000 live births. Our estimate could be an underestimate. Firstly, our study looked only at infants readmitted within 10 days (Oddie et al looked at infants readmitted up to 1 month of age) and secondly, due to failure to recognise this condition.

Laing and Wong proposed weighing all infants when the Guthrie blood samples are taken, to identify those infants at risk of dehydration. We believe that this is too late as in many areas this occurs on days seven or on day 10 with handover of care to the health visitor. We have already described a series of babies with hypernatraemic dehydration where all presented to hospital before day seven.3 The case has been made correctly that newborn hypernatraemia is due to unsuccessful feeding.4 While we agree that careful examination and observation of the infant while feeding and so forth may identify these babies, we would dispute that this is currently universally possible. Due to midwifery shortages, postnatal wards are short staffed and community midwives are fully stretched, so many women are discharged within a few hours of delivering. If a midwifery home visit does not coincide with a feed, the mother’s assessment of feeding is assumed to be correct (as indeed it usually is); Weighing the baby will reassure most mothers that their baby is following the normal pattern of loss followed by gain. Identification of excessive weight loss should prompt the health professional to examine the baby for evidence of illness and carefully observe breast feeding technique. These mother-baby dyads could then be given additional support and advice in the community and thus successfully establish feeding.

In our experience once the baby has become ill and required readmission to hospital the mother is reluctant to continue to attempt to breastfeed.

There continues to be confusion regarding the best way to manage this problem.1 It should be remembered that these babies have normal guts and are suffering from starvation. If the infant is not shocked, rehydration can occur safely using enteral fluids: expressed breast milk or a breast milk substitute. Serum sodium should be measured six hourly initially and the volume of milk altered to ensure a slow return to normality.

We believe that we need to foster a greater awareness of this problem and weigh the babies at risk around day five if we are to prevent tragedies resulting from a common condition affecting otherwise well babies.

D Harding, J Moxham, P Cairns
Neonatal Medicine, Department of Child Health,
University of Bristol, Bristol, UK; david.harding@bristol.ac.uk

References
1 Laing IA, Wong M. Hypernatraemia in the first few days of life: is the incidence rising? Arch Dis Child 2002;87:F158–61.

Hypernatraemic dehydration: excess sodium is not the cause

I am grateful to Laing and Wong for raising once again the issue of hypernatraemic dehydration in the first few days of life.4 However, I think it is important to remember that hypernatraemic dehydration, like anaemia, is a sign of disease and not a diagnosis in itself. A low haemoglobin concentration in blood can be caused by a large number of different pathological and physiological processes. Hypernatraemic dehydration should be seen in the same light.

Laing and Wong’s article describes two situations in which a child can be found to exhibit the typical biochemical and clinical features of hypernatraemic dehydration, that is—weight loss and hypernatraemia. The first mentioned is associated with gastroenteritis in a bottle fed infant, commonly a few weeks old and the second is seen in “breast fed” infants in the first few days of life. The hypernatraemia associated with these situations is caused by different problems with water balance—in neither is the problem an increased intake of sodium. In the infant who diarrhoea there is an excess loss of water and in the “breast fed” baby an insufficient intake of water.

In discussing hypernatraemic dehydration in association with diarrhoea in young infants, Laing and Wong refer to a paper by Chambers and Steel, where attention is drawn to the slightly increased concentration of sodium in artificial milk mixed incorrectly by parents. This is a red herring. The excess sodium concentration of the artificial milk mixed incorrectly by the mothers reached a maximum of 59 mmol/l with a mean of 37.2 mmol/l. Those who believe that this concentration of sodium could be responsible for hypernatraemic dehydration should remember that the concentration of sodium in the standard oral rehydration solutions in use in the UK is either 60 mmol/l (Dioralyte, Dioralyte rebel, Diocalm junior) or 50 mmol/l (Rehidrat, Electrolade) and that the WHO formulation for oral rehydration solution contains 90 mmol/l of sodium.

In fact the cause of this association of hypernatraemic dehydration with diarrhoea is the continued feeding with artificial milk after the onset of diarrhoea. The intestinal hurry associated with gastroenteritis results in the delivery of a solution rich in protein and complex carbohydrates to the colon which, after digestion by colonic bacteria, produces a considerable osmotic load in the colon, which in turn results in the production of voluminous stool in sodium.6 The result is hypernatraemic dehydration due to excessive water loss. Those who require further discussion of this hypothesis are advised to read the excellent paper by Hirschhorn.7

The second situation relates to the title of the piece, namely hypernatraemic dehydration in the first few days of life in association with “breast feeding”. Though the breast milk produced, in very small quantities, by the mothers of these children is often found to contain a high concentration of sodium, this has nothing to do with their babies’ hypernatraemic state. As Jack Newman puts it so eloquently in his electronic response to Laing and Wong, these babies are not dehydrated because they are breast fed but because they are only pretending to breast feed. They are, in fact, starving. This is amply illustrated by the case described in Oddie et al of a “bottle fed” baby admitted at 6 days of age with hypernatraemic dehydration whose dehydration had nothing to do with the bottle milk being “fed” to the baby, but was caused by that the baby had oesophageal atresia.8 Hypernatraemic dehydration is frequently seen in the elderly and the mentally handicapped when their need for basic care, and presumably a regular intake of water, is neglected.9

Hypernatraemic dehydration is a sign of illness not a diagnosis. It is commonly caused by excess water loss or by insufficient water intake—either alone or in combination—has almost never the result of excess sodium intake, which would result in retention of water and an increase in body weight, though this would obviously require intact thirst mechanisms and access to sufficient water.

S Richmond
Sunderland Royal Hospital, Sunderland, UK; Sam.richmond@ncl.ac.uk

References
time integral, during days 1 and 2 after birth
mean velocity, pulsatility index and velocity
two days after birth in preterm infants.
artery (MCA) haemodynamics over the first
flow
Systemic and cerebral blood
Laing and Wong
Hypernatraemia in the first few
days: a tragic case
Laing and Wong highlight the fact that
hypernatraemic dehydration can be difficult
to recognise and may have serious conse-
quences. We describe an extreme case.
An 8 day old infant was admitted to hospital
with a small haematocrit. She had lost 19% of
her birth weight and her plasma sodium was 173 mmol/L. She had renal and hepatic impair-
ment and was found to have a thrombosis of the
descending aorta. In spite of rehydration, thrombolysis and full intensive care support, she
died the following day from progressive
subdiaphragmatic ischaemia and multiorgan
failure. A postmortem revealed no underlying abnormalities. Parental thombophila screens
were normal.
The maternity notes revealed that she was
born at term weighing 3.18 kg after an
uneventful pregnancy. She was breastfed from
birth. On day 3 she had five wet nappies and
appeared to be feeding well. She was allowed
home, with a discharge weight of 2.77 kg, and
visited several times by the community mid-
wives. On each occasion she seemed contented
and thought to be feeding well.
We agree with Laing and Wong that health
professionals may fail to realise how dehy-
drated some infants have become until they
are dangerously unwell. Our infant had lost
12.8% of her birth weight at initial discharge.
The second large weight loss was not recog-
nised and no further attention was paid to the
weight as the baby was considered to be feed-
ing well. To target at-risk infants, we consider
that clinical skills need to be supplemented
with a clear policy of regular weight monitor-
ing with defined thresholds for intervention.

References
1. Laing IA, Wong CM. Hypernatraemia in the first
days: is the incidence rising? Arch Dis Child Fetal
2. P D Macdonald
Southern General Hospital, Glasgow G51 4TF, UK;
peter.macdonald@sgh.scot.nhs.uk
3. Louise Grant, S R M Ross
Southern General Hospital, Glasgow G51 4TF, UK

Systemic and cerebral blood
flow
We read with interest the findings of Evans
et al concerning the changes in middle cerebral
ertery (MCA) haemodynamics over the first
two days after birth in preterm infants. Evans
et al demonstrated a significant change in several Doppler velocity measures in the
MCA, including systolic, diastolic, and mean
velocity; pulsatility index and velocity
time integral, during days 1 and 2 after birth
in a cohort of preterm infants. Blood flow (F),
pressure (P), and vascular resistance (R) are
closely related (F = P/R), and resistance changes are a function of changing
vessel calibre. The authors attempted to
measure MCA diameter, but because meas-
urements were inaccurate the authors did not
try to calculate values for MCA blood
flow.
Our own studies of cerebral haemodynam-
ics, using near infrared spectroscopy, supports the
view of Evans et al that there are significant changes in cerebral blood flow over the
first 36 hours after birth. The demographic
details of our cohort were similar to the one
studied by Evans et al and our results are similar to theirs in terms of mean
(SD) gestation 26 (2) weeks and mean birth
weight 929 (250) g. We found that a significant increase in cerebral blood flow between
day 1 and 2 was accompanied by a
marked decrease in MCA diameter.
Evans et al remind us that velocity is not the
same as flow. Their observations, and our
own, stress the importance of vascular resist-
ance in mediating the relationship between
blood pressure and blood flow. In the sick pre-
term infant, the presence of an adequate
mean arterial blood pressure is often achieved
using pharmacological methods. Although
this is reassuring, it does not guarantee the
presence of good central blood flow, nor the
adequate perfusion of the end organs, includ-
ing the brain.

C M Kissack, S P Wardle, A M Weindling
Neonatal Unit, Liverpool Women’s Hospital,
Liverpool, UK; ukmearinhared@yahoo.co.uk

References
Which to measure, systemic or organ blood
flow? Middle cerebral artery and superior
vena cava flow in very preterm infants. Arch
Cardiac output, blood pressure and cerebral
oxygen extraction in very low birthweight
infants. Arch Dis Child Fetal Neonatal Ed 2001;
84(suppl I):A33.

Transcutaneous bilirubin
measurement in newborn
infants: evaluation of a new
spectrophotometric method
Transcutaneous bilirubinometry in jaundiced
newborns has been extensively evaluated in
the literature. Information about the new
BiliCheck (ToBC) device has appeared in recent
years. Because of the high correlation
coefficient, most studies conclude that trans-
cutaneous bilirubinometry could possibly repla-
ce the laboratory measurement of serum
bilirubin (TSB). However, the number of in-
samples was small, serum bilirubin > 257
µmol/l (15 mg/dl) is too small to assess the
accuracy of ToBC for such infants.

We tested the clinical usefulness of this new
device and compared it with the established
Jaundice Meter (TcBM) by evaluating the lev-
eels of agreement, with TSB as the clinically
used standard. Bilirubin levels were measured
by TcBM, TcBM, and TSB in 122 healthy new-
borns (gestational age 34–44 weeks; mean
39 weeks; mean (SD) birth weight 3187 (582) g)
during the first days of life. For TSB the Vitros
250 BiliBC slide was used. For statistical analy-
sis, the correlation coefficients were calculated
and the difference plots determined by the
Bland-Altman method.

TSB levels ranged between 13.7 and 339
µmol/l (0.8 and 19.8 mg/dl) (mean 186.6
µmol/l (10.89 mg/dl), median 193.6 µmol/l
(11.3 mg/dl)). The correlation coefficient, r,
was 0.92 between TcBM and TSB, and 0.85
between TcBM and TSB. The plot of differ-
ces of TcBM against TSB yielded a maxi-
mum range of −109.9 to +56.5 µmol/l (−6.3 to
+3.3 mg/dl) and TcBM against TSB −107.9µmol/l
(−7.23 to +6.3 mg/dl). The 95% limits of agreement
were between −61.5 and +55.3 µmol/l (−3.59 and +3.23 mg/dl) for
TcBM, and −93.4 and +80.2 µmol/l (−5.45 and
+4.68 mg/dl) for TcBM.

Although the correlation coefficients give
the impression that TcBM and TcBM provide
an accurate estimate of TSB, the differences
between transcutaneous measurement and
TSB or TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
In particular, if TSB levels were higher than
188 µmol/l (11 mg/dl), the measurements
of both instruments progressively grew
as TSB increased. Although either device and TSB values were often quite large.
We observed hyponatraemia in several preterm infants after posthaemorrhagic ventricular punctures in preterm infants. Hyponatraemia as a consequence of serial liquor punctures in preterm infants with a ventricular access device after posthaemorrhagic hydrocephalus

We observed hyponatraemia in several preterm children treated with a ventricular access device (Rosskam reservoir) after intraventricular haemorrhage (IVH) and serial liquor puncture to drain liquor. To rule out a connection, we retrospectively investigated the data of all preterm children (23–32 weeks of gestational age) treated at the University Children’s Hospital of Cologne with a ventricular access device during 1996–1999 (n = 16).

Sixteen of 480 preterm infants (3.3%) of less than 1,500 g birth weight (430–1500 g) developed an IVH and required treatment with a ventricular access device. The mean gestational age of these children was 27 weeks (range 23–32).

Twelve of them (75%) developed hyponatraemia (< 130 mmol/l). The minimum serum sodium of all patients was 110–136 mmol/l (mean SD 125.8 (6.3) mmol/l). The maximum amount of liquor tapped a day was 3–34 ml (mean 15.6 ml). The resulting daily loss of sodium in the tapped liquor was 3–34 ml (mean 15.6 ml). The resulting daily sodium loss was sometimes as high as the normal sodium requirement per day (3–5 mmol/kg/day).

Hyponatraemia in children caused by the use of a ventricular access device should be managed carefully and the sodium replaced promptly. Loss of sodium by serial liquor tapping must be taken into the differential diagnosis of hyponatraemia in preterm infants.

K Tenbrock, A Kribs, B Roth
Department of Neonatology and Pediatric Intensive Care, University Children’s Hospital of Cologne, Cologne, Germany

B Speder
Neurosurgical Department, University Hospital of Cologne

We were surprised by the number of people who had thought about this being a possible problem. With many units choosing to stock only one surfactant, we think that it is important to keep all parents fully informed both of the importance of early administration and the nature of the available surfactants.

We suspect that, while fully informed, most parents would agree to a life saving medicine. However, we are not sure if this consent should be presumed where there are grounds to wonder if this may be a problem. Individual families still need to make their own decisions to avoid the perception that the medical profession has a patronising attitude.

We hope to generate a discussion to see if a consensus can be evolved.

R Adappa, R Benson
Department of Paediatrics, Ysbyty Gwynedd, Bangor, N Wales, UK
S Oddie, J Wylie
Neonatal Intensive Care Unit, James Cook University Hospital, Middlesbrough, UK

Intravenous propacetamol overdose in a term newborn

Following a prescribing error, a term female infant was given two intravenous doses of 900 mg propacetamol (307 mg/kg/dose) at 6 hour intervals, which is 10 times the routine dose used in our unit (120 mg/kg/day; 30 mg/kg dose). When the error was noted, immediately after the second dose, the plasma paracetamol level was 163.8 mg/l. N-Acetylcysteine was given as follows: 150 mg/kg (430 mg) after 15 minutes, 50 mg/kg (145 mg) after four hours, and 100 mg/kg (290 mg) after 16 hours. Plasma paracetamol levels were checked: 119.9 mg/l five hours later, 61.4 mg/l 11 hours later, 28.8 mg/l 16 hours later, and finally 1 mg/l 24 hours after the second dose (fig 1). Liver function and clotting factors were normal. The infant was discharged on day 7.

Paracetamol poisoning in newborn babies is usually due to either maternal absorption of high doses of the drug just before birth or oral absorption of an inappropriate dose. Reports of propacetamol overdose are unusual, and so far the overdose has only been by intramuscular injection. As far as we know, this is the first report of intravenous propacetamol poisoning in a newborn. This reason may be the rare use of this drug during the neonatal period, the pharmacokinetics having been well stockaded Curosurf and Survanta. One did not know which surfactant was available. In Wales, 13 units had only Curosurf and one unit stocked both Curosurf and Survanta.

We were surprised by the number of people who had thought about this being a possible problem. With many units choosing to stock only one surfactant, we think that it is important to keep all parents fully informed both of the importance of early administration and the nature of the available surfactants.

We suspect that, while fully informed, most parents would agree to a life saving medicine. However, we are not sure if this consent should be presumed where there are grounds to wonder if this may be a problem. Individual families still need to make their own decisions to avoid the perception that the medical profession has a patronising attitude.

We hope to generate a discussion to see if a consensus can be evolved.

References

Use of animal surfactant: should we seek consent?

Animal derived surfactants such as Curosurf (porcine) and Survanta (bovine) are the commonly used surfactants in the United Kingdom. Involvement in a trial of a new artificial surfactant, and the specific information on the origins of the surfactant in the patient information leaflet led us to review our practice. Two families declined to participate in the trial. A Hindu family wished to avoid use of Survanta, as cows are considered sacred in Hindu religion. A Moslem family preferred to avoid porcine products. Having reviewed our own practice, we were unsure as to the practice of other units.

We telephoned the second on call doctors in 42 teams providing newborn resuscitation and initial surfactant therapy to preterm infants in England and Wales. Respondents were asked about which surfactant was available and whether the constituents were usually discussed with parents.

Only nine of 42 respondents said that they would routinely discuss the constituents of the surfactant with the families and could remember having done so in the recent past.

Twenty two respondents in England said that their units only stocked Curosurf, two units stocked Survanta, and three units stocked Curosurf and Survanta. One did not remember having done so in the recent past.

Figure 1 Relation between serum sodium concentration and maximum sodium loss in the liquor [r = 0.78, p < 0.001].

Sodium loss (mmol/kg/day) vs Serum sodium concentration (mmol/l)

Figure 1 Serum paracetamol levels after administration of N-acetylcysteine.

Plasma paracetamol level (mg/l)

Time after second intravenous injection (hours)

180 160 140 120 100 80 60 40 20 0

y = -7.2028x + 157.49

R² = 0.9459

26.8

61.4

19.9

www.archdischild.com
published in only one study for this stage of life. However, as with other routes of administration described in the literature, no adverse effects were seen in this case. The administration of N-acetylcysteine following guidelines given for older patients proved efficient. The elimination of the drug seems to be linear. Although drug overdose should be carefully avoided, intravenous propacetamol is probably safe in term newborn babies.

A de la Pintière, A Beuchée, P E Bétrémieux
Unité de réanimation néonatale et pédiatrique, Pavillon Lechartier CHU Pontchaillou, Rennes 35033, France; pierre.betremieux@chu-rennes.fr

References

Endotracheal tube fixation in neonates
A stitch in time saves nine. But not all neonatal units believe in this saying and use different methods to secure oral endotracheal tubes in neonates who require ventilatory support. Success in stabilising a premature infant is best achieved by least intervention and good ventilatory support. A stable oral endotracheal tube will help. A naso-oral endotracheal tube is extremely easy to stabilise; however, stabilisation is not routinely performed in the United Kingdom.

Three commonly used methods are: (a) stitching the tube to a plastic flange; (b) fixing a premeasured and cut tube in a flange with adhesive tape; (c) fixing a premeasured and cut tube into a tight fitting flange. In all three methods, the tube is secured by tying it to the baby's hat.

Normally, weight or foot length is used to determine endotracheal tube size, and this is quite reliable. However, head movement, suctioning, and patient care can all cause instability and displacement of the tube. If the tube is too short, there will be ineffective ventilation. If the tube is too long, it may collapse resulting in selective ventilation. A precut tube is difficult to manipulate if the positioning is not satisfactory. This is not a major problem in a stitched tube. There are pros and cons to each method.

There are no comparative studies from the United Kingdom to evaluate the benefits and disadvantages of each method. A search through the databases found no randomised trials comparing various techniques, except one study which compared an umbilical clamp with the routine fixing method.

Accidental extubation or unsatisfactory positioning of the tube may influence the reintubation rate. Securing and properly stabilising an endotracheal tube can solve this problem to a large extent.

A prospective randomised trial evaluating each method against reintubation criteria will help neonatal units to adopt the correct policy for their own situation.

V A Pai
Southmead Hospital, Bristol, UK
B V Pai
Royal united Hospital, Bath, UK; binapai@hotmail.com

References