Intestinal absorption of mixed micellar phylloquinone (vitamin K₁) is unreliable in infants with conjugated hyperbilirubinaemia: implications for oral prophylaxis of vitamin K deficiency bleeding

S P Pereira, M J Shearer, R Williams, G Mieli-Vergani

Objective: To compare the pharmacokinetics and efficacy of oral versus intravenous mixed micellar vitamin K prophylaxis in infants with cholestatic liver disease, a known risk factor for vitamin K deficiency bleeding.

Design: Prospective randomised controlled study.

Setting: Paediatric Liver Unit.

Patients: Forty four infants less than 6 months of age with conjugated hyperbilirubinaemia.

Main outcome measures: Serum concentrations of vitamin K₁, and undercarboxylated prothrombin (PIVKA-II; a sensitive functional indicator of vitamin K status) before and for up to four days after a single dose of mixed micellar K₁, 1 mg intravenously or 2 mg orally. Comparison of K₁ levels 24 hours after oral K₁ with those from 1:4 healthy newborns given the same dose.

Results: At admission, 18 infants (41%) had elevated levels of serum PIVKA-II and eight (18%) had low K₁ concentrations, indicative of subclinical vitamin K deficiency. Median serum K₁ concentrations were similar in the oral and intravenous groups at baseline (0.92 v 1.15 ng/ml), rising to 139 ng/ml six hours after intravenous K₁, but to only 1.4 ng/ml after oral administration. In the latter group, the low median value (0.95 ng/ml) and wide range (< 0.15–111 ng/ml) of serum K₁ compared unfavourably with the much higher levels (median 77, range 11–263 ng/ml) observed in healthy infants given the same oral dose, and suggested impaired and erratic intestinal absorption in cholestatic infants. The severity of malabsorption was such that only 4/24 (17%) achieved an incremental rise in serum K₁ > 10 ng/ml.

Conclusions: The intestinal absorption of mixed micellar K₁ is unreliable in infants with conjugated hyperbilirubinaemia. Given the strong association between cholestasis and late vitamin K deficiency bleeding, these data provide an explanation for the failure of some oral vitamin K₁ prophylaxis regimens in infants with latent cholestasis.

Vitamin K deficiency bleeding (VKDB) in infancy (previously known as haemorrhagic disease of the newborn) comprises early (0–24 hours), classical (1–7 days), and late (2–12 weeks) syndromes according to the time of presentation. Late VKDB was first described in Thailand in 1963, and in the 1980s became recognised worldwide as a significant cause of infant morbidity and mortality. Of major concern is its sudden and unpredictable onset and the high (50–82%) frequency of intracranial haemorrhage as the presenting feature. Known risk factors include breast feeding and the failure to give vitamin K prophylaxis at birth. An association between late VKDB and undiagnosed abnormalities of liver function has also been reported in surveillance programmes from several countries, including Japan, the United Kingdom, Sweden, Denmark, Switzerland, and Germany, as well as in individual case reports. Evidence for liver dysfunction in some cases has rested on transient, mildly abnormal biochemical indices, but several surveys have indicated that certain cholestatic liver diseases such as biliary atresia and antipancreatic deficiency may be responsible for the great majority of cases of late VKDB.

In Europe, the most widely used vitamin K preparation is Konakion (F Hoffmann-La Roche Ltd, Basle, Switzerland). Since 1994, the original Konakion, which contained the non-ionic detergent Cremophor EL as solubiliser, has been superseded by a mixed micellar formulation (Konakion MM) in which phylloquinone (vitamin K₁, K₁) is solubilised in glycocholic acid and phosphatidylcholine. A paediatric Konakion MM formulation is now in wide use for oral vitamin K prophylaxis of VKDB, and in healthy babies has been shown to give higher serum levels than the earlier preparation, suggesting a superior bioavailability. It has also been claimed that Konakion MM is well absorbed in infants with severe cholestasis, although vitamin K absorption kinetics have been studied in only three infants with biliary atresia given a 20 mg dose. The need for a more thorough evaluation of the influence of cholestasis on the bioavailability of orally administered vitamin K is highlighted by reports of failures of some oral regimens, especially in infants with latent cholestasis.

In 1993, the American Academy of Pediatrics Vitamin K Ad Hoc Task Force recommended further research on the efficacy, safety, and bioavailability of oral formulations of vitamin K. To study this, we compared the pharmacokinetics of mixed micellar K₁ (Konakion MM) in infants with conjugated hyperbilirubinaemia randomised to a single dose of either 1 mg intravenously—the standard treatment in infants with liver disease and an associated coagulopathy—or 2 mg orally.

Abbreviations: INR, international normalised (prothrombin) ratio; PIVKA, proteins induced by vitamin K absence or antagonism; VKDB, vitamin K deficiency bleeding
In addition, we measured serum undercarboxylated prothrombin (PIVKA-II), which is a sensitive functional indicator of vitamin K status, allowing the detection of subclinical deficiency states which would not be detected by conventional coagulation assays.\(^2\) \(^27\) \(^28\) Methodologies

Patients

Over an 18 month period, 44 infants (27 boys, 17 girls), aged 1–26 weeks (median 6.5) with conjugated hyperbilirubinemia were referred to the Paediatric Liver Service of King's College Hospital and enrolled in the study. The most common cause of their liver dysfunction was idiopathic neonatal hepatitis (n = 17; 39%), followed by biliary atresia in 13 (30%) and total parental nutrition cholestasis in three (7%). There were two cases each of Alagille’s syndrome, α-antitrypsin deficiency, and inspissated bile syndrome, and five miscellaneous diagnoses (fructosaemia, galactosaemia, choledochal cyst, cystic fibrosis, and inspissated bile syndrome). Inclusion criteria were a serum bilirubin concentration above the upper limit for healthy adults (1.5 ng/ml), indicating recent K1 deficiency, and no haematological evidence of haemolysis.

Serum K1 was measured by high performance liquid chromatography, to either (a) an intravenous injection of 1 mg mixed micellar K1 (given over one minute) or (b) 2 mg by mouth (dispensed on the back of the infant’s tongue just before feeding). The study medications were administered as a single dose in the morning. Blood samples were taken immediately before and at six hours after treatment, and for up to four consecutive mornings thereafter. Samples were protected from light (K, assays) and refrigerated immediately. After centrifugation, serum aliquots were stored at −70°C.

To compare the intestinal absorption of mixed micellar K1 in cholestatic and healthy infants, we used the results from a previous study\(^29\) in which 14 healthy newborns (mean birth weight 3740 g) who were to be fully breast fed were given the same oral dose of 2 mg within one hour of birth, and serum K1 was measured 24 hours later using methods identical with those of the present study.

Statistical analysis

Statistical analysis between the two groups was carried out using a two tailed Student’s t test (for serum K1) and non-parametric tests (for serum PIVKA-II prevalence), as appropriate. Differences in proportions were compared using the χ² or Fisher’s exact test.

The study was approved by the research ethics committee of King’s College Hospital.

RESULTS

The two groups of cholestatic infants were well matched for sex, age, and cause and severity of liver dysfunction, with median serum bilirubin levels of 136 and 153 µmol/l in the oral and intravenous groups respectively (table 1). Infants in the oral group had a higher median gestational age and birth weight than those in the intravenous group, but body weights at the time of the study were similar (3.8 v 3.2 kg; p = 0.08). Undernutrition was common in both groups; 50% of the 44 babies were below the 3rd centile for weight, and a further 23% were between the 3rd and 10th centile.

At baseline, serum K1 concentrations in the oral and intravenous groups were similar (median 0.92 v 1.15 ng/ml; p = 0.1) and were below the lower limit of the adult normal range (< 0.15 ng/ml) in 5/24 (21%) infants in the oral group and 3/20 (15%) in the intravenous group. Seventeen infants (39%) had baseline serum K1 levels that were above the upper limit for healthy adults (1.5 ng/ml), indicating recent K1 deficiency, and/or the use of supplemented formula feeds before transfer; the latter often produce higher serum K1 levels than those found in healthy adults.\(^30\)

Figure 1 shows the time course of serum K1 concentrations after the administration of mixed micellar K1 (2 mg) orally or intravenously (1 mg). Although serum levels in the oral group at 6 and 24 hours varied widely (from non-detectable to 454 ng/ml), the very low median values of 1.40 and 0.95 ng/ml respectively indicated a poor overall absorption in cholestatic infants. In all five infants in the oral group who had low or undetectable serum K1 at baseline (< 0.15 ng/ml), the highest serum level achieved was 1.4 ng/ml, and at 48 hours the levels had again fallen to or below the lower limit of normal.

In contrast with the levels in the oral group, 90% of the infants given intravenous K1 had a high serum K1 (median 139 ng/ml) at six hours, reflecting the rapid bioavailability by this route. Thereafter, the median serum K1 level remained higher than that after oral administration at all time points (fig 1), although this difference was only significant over the first 24 hours, reflecting the well known rapid serum clearance of K1 after intravenous injection.\(^30\) Two of the infants in the intravenous group had serum K1 levels of < 1 ng/ml at six hours.
hours, which then rose to 1.8–2.8 ng/ml at 24 hours. This slow rise after six hours rather than the expected decrease was suggestive of inadvertent extravascular injection, and was supported by the finding in one infant (no samples were available beyond 24 hours in the other) of a peak serum K1 level of 13.1 ng/ml at 48 hours.

In those infants with a peak incremental serum K1 level of > 10 ng/ml, the median terminal serum K1 half life of disappearance of K1, between 24 and 96 hours was 21 hours (range 17–39 hours) compared with a terminal K1 half life of 14 hours (range 8–22 hours) in healthy adults after intravenous injection, and of 76 hours (range 26–193 hours) in healthy newborns after oral dosing. There were no significant correlations between serum K1, terminal half life and creatinine or bilirubin concentrations.

Figure 2 shows the serum K1 levels at 24 hours in infants in the oral group compared with those from a previous study in healthy newborns using the same dose, preparation, and vitamin K assay.

In the 18 infants with a raised PIVKA-II at baseline, 16 (89%) had lower levels as early as six hours after vitamin K, and in 15 the values declined further up to 72 hours. The median half life of PIVKA-II disappearance was 20 hours (range 10–45 hours), comparable to the known serum half life in newborn infants of about 45 hours. In two infants in the oral group, there was a paradoxical rise in infant from the intravenous group, PIVKA-II increased from 0.2 AU/ml at baseline to 0.58 and 0.86 AU/ml at six and 24 hours respectively; this was the same infant in whom the peak serum K1 occurred at 48 hours, suggestive of extravascular administration.

One infant in each group had baseline PIVKA-II levels within the range usually found during warfarin anticoagulation (9.9 and 27.6 AU/ml respectively), although both had a normal INR. After vitamin K administration, there was a logarithmic decline in PIVKA-II over 48 hours, with half lives of disappearance of 20 and 35 hours respectively.

During the study, there were no adverse events attributable to vitamin K administration, and no clinical bleeding episodes.
All 13 infants with biliary atresia later underwent a Kasai procedure; 10 are currently well with a normal serum bilirubin, one has mild residual jaundice, one underwent liver transplantation, and one died while on the waiting list. Of the remaining 31, one infant with Alagille’s syndrome underwent liver transplantation, one died of multiple cardiac anomalies, and 29 made a full recovery.

DISCUSSION

To our knowledge, this is the first randomised controlled study of vitamin K status and metabolism in infants with conjugated hyperbilirubinaemia. All had severe liver dysfunction, with idiopathic neonatal hepatitis and biliary atresia predominating. Overt vitamin K deficiency was absent at admission, as evidenced by INR values within the age related normal range. However, 41% (18/44) of the infants had a raised serum PIVKA-II at presentation, consistent with subclinical vitamin K deficiency, and 18% had low serum K1 concentrations indicative of reduced tissue stores, and in 16% both abnormalities were present. The lack of an association between a raised baseline PIVKA-II and low serum K1 (and vice versa) has been reported previously, and may relate to interindividual differences between circulating vitamin K and liver stores (which include bacterial menaquinones; K2 vitamins) and to delayed clearance of PIVKA-II after correction of deficiency.

PIVKA-II is a sensitive functional marker of vitamin K status. In those infants who presented with an elevated (> 0.15 AU/ml) PIVKA-II, the median value of 1.84 AU/ml was about sixfold higher than that found in a recent study of healthy 2–5 month old infants in the United Kingdom. Two infants had PIVKA-II levels within the range usually found in adults undergoing warfarin treatment, indicating a severity of vitamin K deficiency that, without intervention, would have progressed to overt coagulopathy. As previously reported in healthy infants, PIVKA-II tended to be found more commonly in the partly or wholly breast fed cholestatic infants, whose K1 intake would have been less than that in the exclusively formula fed infants.

The importance of an elevated PIVKA-II as a specific functional marker of vitamin K deficiency in early life has been questioned because of the possibility that raised levels may result from delayed maturation of the liver enzyme γ-glutamyl carboxylase. Another caveat is that PIVKA-II may simply reflect liver dysfunction, because raised levels in the absence of demonstrable vitamin K deficiency are occasionally found in adults with chronic liver disease. Our results argue strongly against either possibility because in 15/18 infants, the initially raised PIVKA-II declined after the administration of vitamin K at rates consistent with previous estimates of the plasma disappearance of PIVKA-II.

The wide range of but low median serum K1 concentrations after oral administration of Konakion MM is clear evidence of a variable and often low efficiency of intestinal absorption in infants with cholestasis. Time course studies in adults have shown that serum/plasma concentrations of K1, generally peak two to four hours after an oral dose and then decline to endogenous concentrations by 24 hours. Ethical considerations limit longitudinal blood sampling in healthy neonates, but a cross sectional study in 42 babies given a 1 mg dose of K1 (Konakion, old formulation) orally at birth showed that the time course over the first 12 hours was similar to that in adults, with the peak plasma K1 level occurring at the four hour time point. Although this cross sectional study also showed a high interindividual variability in plasma K1, the median values at four and eight hours were 75 and 30 ng/ml respectively, and in only one neonate was the concentration < 10 ng/ml. These results contrast strongly with those of the present study of cholestatic infants, in whom the median concentration at six hours after double the dose of Konakion MM was only 1.4 ng/ml and 20/24 infants (83%) failed to maintain an incremental serum rise above 10 ng/ml. The extremely poor response (maximum serum K1 of 1.4 ng/ml) in the five infants who had undetectable serum K1 (< 0.15 ng/ml) at baseline also suggests, as may be expected, that a very low serum K1 is predictive of a low absorption efficiency for vitamin K. The comparative data for the 24 hour concentrations (fig 2) confirm the high degree of malabsorption of K1 in infants with cholestasis, at a sampling time that is representative of the postabsorptive phase when serum K1 concentrations are less variable than during the first eight hours after oral administration. In infants, serum K1 concentrations at 24 hours remain higher than in adults because the terminal half life of disappearance of K1 is longer. We consider that the comparative data at 24 hours are especially valid because they reflect serum concentrations after the same dose (2 mg) of Konakion MM, and serum concentrations of K1 were measured in the laboratory of one of us (MJS) by the same analytical method.

One explanation for the severely impaired intestinal absorption of K1 in cholestasis is a deficiency of bile salts that are essential for the micellar solubilisation of this fat soluble vitamin. Studies with tritium labelled K1 in adult patients with extrahepatic cholestasis have shown that, in the absence of endogenous bile acids, there is little or no absorption of K1, as assessed by the recovery of tritium label in thoracic duct lymph, plasma, and faeces. The intestinal absorption of K1, from the tonic, mixed micelles of Konakion MM, with natural bile salt/phospholipid components, may be expected to be superior to that from the non-ionic, artificial Cremophor vehicle of the original Konakion. Indeed, comparative pharmacokinetic studies have shown increased peak plasma levels after oral Konakion MM in healthy infants given a 2 mg dose and also in infants with biliary atresia given a 20 mg dose. However, the latter study was limited to three patients per group, and the large dose (20 mg) administered is unrepresentative of current community prophylaxis policies.

Our finding of unreliable and often severely impaired intestinal absorption of mixed micellar K1 in cholestatic infants has important implications for oral prophylactic policies for the prevention of late VKDB. Since a reported but unconfirmed association between childhood leukaemia and intramuscular vitamin K prophylaxis, there has been an increasing trend towards oral administration. Ideally, oral prophylactic regimens need to be as effective as a single intramuscular dose (1 mg) of K1, which prevents almost all cases of late VKDB. In many countries, current recommendations for oral prophylaxis are to administer two or three doses of 1 or 2 mg of K1, over the first 4–6 weeks of life. However, recent surveillance data from Australia, Germany, and Switzerland suggest that this strategy is less effective than intramuscular...
prophylaxis in preventing late VKDB,14 15 54 and the potential improved efficacy of the mixed micellar preparation compared with oral K1 given a day has also reportedly been unproven.56 Population surveys carried out in the last decade indicate that underlying cholestatic liver disease, usually asymptomatic, is a major causative factor for late VKDB.15 54 It has also been presumed that this association is due to an impaired absorption of vitamin K, our study is the first to document the potential severity of malabsorption in individual infants with cholestasis. The incidence of a reservoir of infants with cholestasis who remain unprocted, even by three doses of Konakion MM, is highlighted by a new surveillance study by von Kries et al.50

Before the introduction of vitamin K prophylaxis, estimates of the incidence of late VKDB in Europe and Japan ranged from Denmark,57 the Netherlands,58 and the United Kingdom60 indicate that additional benefits accrue with higher dose frequencies. Our findings and the known physiology of vitamin K suggest why even three oral doses may not provide sufficient protection in infants with underlying cholestasis. K1 differs from other fat soluble vitamins in that it has limited catabolism does not seem to be dose related; in adults the same 60–70% losses accrue for doses ranging from 45 µg to 1 mg.59 60 Unless there are additional unknown factors that limit excretion under conditions of deficiency, it may therefore be predicted that the length of protection afforded by a given dose is proportional to the fraction absorbed. Thus, although oral K1 administration may afford protection for longer term protection. In contrast, it may further reduce (but not eliminate) the incidence of late VKDB. Data showing very different pharmacokinetics and lipoprotein distribution between muscle tissue.

REFERENCES
Want full access but don't have a subscription?

Pay per access

For just US$25 you can have instant access to the whole website for 30 days. During this time you will be able to access the full text for all issues (including supplements) available. You will also be able to download and print any relevant pdf files for personal use, and take advantage of all the special features Archives of Disease in Childhood online has to offer.

www.archdischild.com