LETTERS TO THE EDITOR

Oxygen saturation and retinopathy of prematurity

EDITOR,—The observations of Tin et al have led them to suggest that babies may have better overall outcomes when unit policies aim at oxygen levels of 70–90%, much lower than current practice in most NICUs. While I would support their call for further well designed research into this question, I have major concerns that this concept of beneficial hypoxia might creep into clinical practice, and even be extended to the older survivors. The authors are clearly aware of the limitations of their study. There are obviously many possible alternative reasons for the differences in outcome between the nurseries; table 2 of the study suggests widely divergent policies on a number of issues apart from oximetry levels. There are no data supplied regarding the actual oximetry levels maintained in the nurseries, which makes conclusions about the safety of a saturation of 70% rather speculative.

My main concern is the potential risk to older babies with chronic lung disease who might once again be subjected to chronic hypoxia. Since the more widespread acceptance that babies with chronic lung disease require similar oxygen levels to their more fortunate brethren we have largely abolished the high first year mortality in these babies, and any further increase in hypoxia and pulmonary hypertension which was previously seen. One observational study of differing oximetry levels within a single unit confirmed the high risk of even mild chronic hypoxia in this group of infants, showing a high risk of apparently life threatening events in the hypoxic infants.

While there is continued uncertainty about the optimum oximetry levels in the early life of a preterm baby, there is no justification for maintaining subnormal levels of oxygen in babies beyond 34–36 weeks of age with chronic lung disease, and I trust that this paper will not encourage such practice.

ROB PRIMHAK
Senior Lecturer in Respiratory Paediatrics, Sheffield Children’s Hospital, r.a.primhak@sheffield.ac.uk

Oxygen saturation and retinopathy of prematurity—Authors’ response

EDITOR,—We are happy to make it clear that we have never suggested that hypoxia is “beneficial” to babies with chronic lung disease. Indeed in describing our own practice we said, quite specifically, that “babies who were at least 8 weeks old (and it should be remembered that all our babies were born more than 12 weeks early)”, and whose retinal vasculature was mature, received liberal oxygen supplementation.” We would, however, remind Dr Primhak that those babies in the recent STOP-ROP trial who were given enough supplemental oxygen to maintain a saturation of 96–99% (i.e. to see if this reduced the severity of the retinopathy they had already developed) developed significantly more pulmonary problems than those only given enough oxygen to maintain a saturation of 89–94%.

The idea that oxygen is always a “good thing” dies hard. Iles and Edmunds showed that babies with a saturation below 90% in air at discharge were more likely to have a frightening colour change, apnoeic episode and/or sudden change in muscle tone during the subsequent three month study period, but they did not show that this risk was reduced by being on oxygen. There is equally little objective evidence that offering sustained supplemental oxygen actually does reduce the incidence of troublesome pulmonary hypertension.

WIN TIN
Department of Paediatrics, South Cleveland Hospital, Middlesbrough TS4 3BW, UK

DAVID MILLIGAN
PHILIPPA PENNIFERTHER
Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK

Two sacred cows of neonatal intensive care

EDITOR,—I read the descriptive study of Tin et al with considerable interest. In essence it challenges two sacred cows of neonatal intensive care, whether intra-arterial monitoring is necessary, and what is the appropriate PaO2 target. To which we might add an orange.

ARTERIAL MONITORING

Reporting their cerebral palsy rate is irrelevant. Improved neonatal care has in general (depressingly) little effect on cerebral palsy rates; what changes is the number of survivors and the numbers dying.

Importantly, cerebral palsy is only one part of the problem of surviving ELBW. Equally worrying is their under performance at school in childhood and adolescence. In the past, when children with cyanotic congenital heart disease were either inoperable or operated on only in early childhood, prolonged early hypoxaemia of the level used by Tin et al was associated with subsequent cognitive defects. The Newcastle group has a distinguished track record of long term follow up studies, and hopefully the babies in this study will be followed until adolescence. However, until such data show that babies kept at 3.3–6.0kPa for days and weeks during a vulnerable period for brain development do as well as those kept adequately oxygenated, I would regard the practice as described by Tin et al as of unproven benefit and possibly dangerous.

Finally, the marked restriction of oxygen therapy was, at best, experimental. Was a protocol for this study approved by the local research ethics committee? If not, why not?

NRC ROBERTON
Neonatologist, Lozere Harppool

Two sacred cows of neonatal intensive care—Authors’ response

EDITOR,—I am glad to have a chance to respond to Dr Roberton’s assertion that the care of the babies nursed using oximeter settings of 70–90% was “negligent”, since I was responsible for these children, but time and space does not allow a full response. Neither does space allow me to respond to the criticism implicit in your own introductory statement that such care “breaches BAPM guidelines.”

Dr Roberton says the cerebral palsy rate is “irrelevant”, but parents might not agree. Parents might also be glad that, while 4 children monitored using an oximeter alarm set at 80–90% went blind, no child in the other group went blind. They might also be glad that half were of the group went blind. They might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. They might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. They might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. They might also be glad that, while 4 children in the other group went blind, no child in the other group went blind.

Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind.

Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind. Parents might also be glad that, while 4 children in the other group went blind, no child in the other group went blind.

Finally, Dr Roberton asks if this approach ever had ethics committee approval. It did not, because it was merely a continuation of the non-invasive approach initiated by my predecessor Dr Neligan in the mid 1970s, aided by the arrival of transcutaneous gas monitoring. Neither was the introduction of pancuronium in Dr Roberton’s own unit placed before an ethics committee.

I can only conclude that someone ought to cull the two sacred cows Dr Roberton has been worshipping (along with all the other animals recently culled in the UK). In the absence of any other evidence based information, we need a proper controlled trial to address these issues.

EDMUND HEY
Retired Consultant Paediatrician, Newcastle, UK
hey@easynet.co.uk

Using a modified nasopharyngeal airway in Pierre Robin syndrome

EDITOR,—Masters et al describe how a modified endotracheal tube can be used as a nasopharyngeal airway in infants with Pierre Robin syndrome.1 We describe further modifications made to overcome some problems which we encountered in using the technique in one of our patients.

In the original description the protruding part of the airway is cut into four strands and the upper one cut off. We found the remaining strands rather thick, so cut them to half the width. We found that leucoplast tape was the only tape that held the strands together with no additional benefit resulting from the use of Tinc Benz. The strands rubbed badly where they curved over the edge of the nostril. To overcome this a piece of suction catheter (9F) of just sufficient length to extend over the lateral and medial walls of the nostril is tied transversely across the tube with a 3/O silk tie (fig 1). This lifts the three strands off the edge of the nostril and prevents any rubbing.

In our patient blockage of the airflow occurred after formula but not breast milk feeds. It is therefore advisable to suction the airflow after each feed. We used a suction catheter with graduation marks enabling insertion no further than the tip of the airflow. If inserted further the pharyngeal stimulation usually caused vomiting.

If a nasogastric tube is also required this can be taped to one of the strands rather than the face. The airflow was changed every four to six days, immediately before a feed and alternating between nostrils. Using 1% lignocaine drops and smearing the tube with lignocaine jelly reduced crying time after insertion.

Compared to the use of an unmodified tube with a large connector attached to the end, we feel that the technique described by Masters et al is far superior as it enables the child to lie prone and is less liable to get knocked or blocked through kinking. We suggest that the modifications we have described will further improve the acceptability of the technique.

MARIA GALOAGAVROU
KEETH FOOTE
Department of Paediatrics, Royal Hampshire County Hospital, Winchester, Hampshire SO22 5DG, UK
mariagaloo@hotmail.com

Letters, Book review

Use of the black area on the tube tip: rapid estimation of insentional depth of endotracheal tubes in neonates: a potential hazard

Editor, — I would like to report on a premature neonate who was intubated unilaterally as a result of improper use of the black area at the endotracheal tube tip.

At 29 weeks gestational age, a 1020 g boy was born by emergency caesarean section to a mother who presented with preeclampsia. He was intubated immediately for signs of severe respiratory distress with a 3.0 mm ID tube via the nasotracheal route by the resident on call. The black area of the tube was inserted full length through the vocal cords with the upper rim positioned at the level of the vocal cords. Breath sounds were equally distributed bilaterally on auscultation. The tube was fixed with adhesive tape at the 10 cm mark at the nose. A thoracic x-ray revealed that the tube tip was located in the entrance of the right main stem bronchus. The tube was withdrawn 1.5 cm and re-fixated at 8.5 cm at the nose, after which exogenous surfactant was instilled for treatment of grade 3 idiopathic respiratory distress syndrome. The ensuing clinical course was uneventful and the infant was discharged with signs of mild bronchopulmonary dysplasia several weeks later.

During the evaluation of this incident it was found that the resident who intubated had been taught at another institution that the position of the upper rim of the black area at the level of the vocal cords would ensure a proper insentional depth. However, the tubes at this other institution were produced by a different manufacturer. This prompted us to measure the actual length of the black area on the neonatal size endotracheal tubes of four major manufacturers. As shown in table 1, the length of the black area varies among the tubes from different manufacturers. One manufacturer has adjusted the length of the black area to the size of the patients for which the tube is intended. The reduction from 18% to 11% in the risk of mortality was significant ($p = 0.005$).

Recent advances in obstetrics and neonatology could explain the absence of an antenatal steroid associated reduction in mortality. There was no statistically significant association between optimal steroid use and the outcome measures of days of intermittent positive pressure ventilation, days of oxygen, and surfactant treatment.

Table 1 Length of black area at the tube tip of endotracheal tubes for neonatal use as produced by four major manufacturers

<table>
<thead>
<tr>
<th>Tube (ID)</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rusch</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Portex</td>
<td>20</td>
<td>20</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Vygon (st)</td>
<td>17</td>
<td>19</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Vygon</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Mallinkrodt</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 1 shows conflicting results. It is evident that the sample examined in this study is over-represented in terms of the small number of premature babies who were treated with antenatal corticosteroids. This is because of the small number of premature babies who were intubated at the hospital. The number of premature babies who were intubated at the hospital was significantly lower in the group that was treated with antenatal corticosteroids compared to the group that was not treated with antenatal corticosteroids.

In conclusion, this report illustrates that caution is required in the use of the black area at the endotracheal tube tip for rapid estimation of insentional depth of endotracheal tubes in neonates.

References

3. Respiratory distress syndrome and antenatal corticosteroid treatment in premature twins

Editor, — Randomised, placebo controlled trials of antenatal corticosteroid administration have not shown a significant reduction in the incidence of respiratory distress syndrome (RDS) in premature twins. Subsequent retrospective studies examining the effect of steroids on twin pregnancies have shown conflicting results. Further to our recent article, we have investigated the relation between respiratory distress and antenatal corticosteroid treatment in premature twins from the same historical cohort selected from the Australia and New Zealand Neonatal Network (ANZNN) 1995 database. To reflect best possible clinical practice, the analysis was restricted to the effects of an optimal steroid course (two doses of corticosteroids given, the first dose of which was received more than 24 hours and less than eight days before the infant’s birth) compared with no steroid treatment.

As shown in table 1, treatment with antenatal steroids resulted in a significantly lower incidence of RDS and surfactant use. The reduction from 18% to 11% in the risk of mortality was not significant ($p = 0.08$). Recent advances in obstetrics and neonatology could explain the absence of an antenatal steroid associated reduction in mortality.

There was no statistically significant association between optimal steroid use and the outcome measures of days of intermittent positive pressure ventilation, days of oxygen, and surfactant treatment. The sample examined in this study is over twice the size of the most recent retrospective analysis, which reported no antenatal steroid associated reduction of RDS in twins. However, the reduction in RDS incidence observed in our study is less than that seen in singleton infants (RR 0.89, 95% confidence interval 0.62 to 0.96). Optimal steroid treatment may be less effective in multiple gestation pregnancies because the increased volume of distribution in these mothers may reduce the plasma level of steroids to which the fetuses are exposed.
Table 1 Effect of antenatal steroids on respiratory distress syndrome (RDS) in premature twins

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Optimal antenatal steroids</th>
<th>No antenatal steroids</th>
<th>Odds ratio (95% CI)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDS</td>
<td>184/310</td>
<td>79/106</td>
<td>0.49 (0.27 to 0.91)</td>
<td>0.02</td>
</tr>
<tr>
<td>Surfactant use</td>
<td>162/333</td>
<td>67/108</td>
<td>0.58 (0.34 to 0.99)</td>
<td>0.05</td>
</tr>
<tr>
<td>Mortality</td>
<td>38/334</td>
<td>20/110</td>
<td>0.53 (0.26 to 1.06)</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Results are number of twin infants affected over number of infants at risk, also expressed as a percentage. Odds ratio and p values were produced by logistic regression with standard errors adjusted for within pair correlation.

Data used for this study came from the Australia and New Zealand Neonatal Network.

DOUG HACKING
ANDREW WATKINS
SIMON FRASER
Department of Paediatrics, Mercy Hospital for Women
Clarendon Street, East Melbourne
Victoria 3002, Australia

RORY WOLFE
TERRY NOLAN
Clinical Epidemiology and Biostatistics Unit
Murdock Children’s Research Institute, Royal Children’s Hospital and
Department of Paediatrics, University of Melbourne
Melbourne, Victoria 3052, Australia

BOOK REVIEW

Progress in the management of disease in the newborn has carried with it a recognition of the substantial risk of injury to the immature nervous system. The aspiration to localise and prognosticate from neurological signs in the early newborn period is easily understood. The problem is that the signs available to be discerned are in themselves usually insufficient to allow precision. In addition, the child grows and develops, the range and complexity of skills are constantly changing, and the manifestations of the lesion(s) alters, or may become silent, often to reappear later as a different but nevertheless highly significant impairment.

The evaluation of the newborn nervous system was originally based upon concepts learnt from adult neurology. The baby was seen as demonstrating little or no cortical or cerebellar activity and the study of primary reflexes predominated. The approach of adult neurology, with emphasis on localisation of the lesion, becomes less applicable in the younger child. In the newborn period, focal insults to the brain will often give rise to generalised disturbances and, contrarily, generalised disturbances may show focal deviations. Recognition of these phenomena has led to a progression from the concept of a localisation based neurology to one which sees the infant displaying a neurological/behavioural repertoire. Over the past several decades Saint Anne Dargassies, Prechtl, Amiel Tison, Brazelton, Dubowitz, and others have, through meticulous study, done much to illuminate this area. Through these studies, awareness of the importance of the behavioural state of the baby, as well as the more detailed neurological items has evolved.

A second problem in this area, particularly in relation to research studies, has been the development of a systematic newborn neurological examination which is reliable and repeatable. This has been the subject of the two editions of this work. The first, published in 1981, gave a detailed, easily understood and applied system for the neonatal neurological examination. The current edition brings that work up to date. New material is presented, refinement of the scheme has occurred, and the examination is described. Items which were less discriminatory of pathology from the 1981 version have been withdrawn and, following the work of Prechtl, more emphasis is placed on the analysis of general movements. There is a further post neonatal to two year old infant neurological examination proforma presented briefly at the end of the text.

The text is essentially a manual on the application of this neurological examination scheme. It is easy to follow and the segments of the examination are presented clearly with excellent photographs and line drawings of each manoeuvre. There is also a useful addendum (“cautionary tales”) to each section of the examination, giving guidance on possible pitfalls and sources of error. There is a lot of very useful information on the variations in findings in term and preterm infants, and particularly the changes in the neurological features of preterm infants as they grow towards term. There follows a section on the development of brain structure and function and this is well placed as it is an appropriate follow-up to the examination section. Again there is a lot of very useful material on possible pitfalls and sources of error. The book is not designed to be a text of neonatal neurological and readers looking for discussion of neurological disease states will be disappointed. As a description of a comprehensive and easily applied system of neonatal neurological examination the new edition succeeds admirably.

MICHAEL F SMITH
Neonatal Intensive Care Unit,
Royal Hospital for Women,
Leavegreave Road,
Sheffield S7 1RB, UK

www.archdischild.com