LETTERS TO THE EDITOR

Oxygen saturation and retinopathy of prematurity

EDITOR,—The observations of Tin et al have led them to suggest that babies may have better overall outcomes when unit policies aim at oxygen levels of 70–90%, much lower than current practice in most NICUs. While I would support their call for further well designed research into this question, I have major concerns that this concept of beneficial hypoxia might creep into clinical practice, and even be extended to the older survivors. The authors are clearly aware of the limitations of their study. There are obviously many possible alternative reasons for the differences in outcome between the nurseries; table 2 of the study suggests widely divergent policies on a number of issues apart from oxygenometry levels. There are no data supplied regarding the actual oxygen levels maintained in the nurseries, which makes conclusions about the safety of a saturation of 70% rather speculative.

My main concern is the potential risk to older babies with chronic lung disease who might once again be subjected to chronic hypoxia. Since the more widespread acceptance that babies with chronic lung disease require similar oxygen levels to their more fortunate brethren we have largely abolished the high first year mortality in these babies, and the chronic hypoxemia is the major concern. The early hypoxia was previously seen. One observational study of differing oxygenometry levels within a single unit confirmed the high risk of even mild chronic hypoxia in this group of infants, showing a high rate of apparently life threatening events in the hypoxic infants.

While there is continued uncertainty about the optimum oxygenometry levels in the early life of a preterm baby, there is no justification for maintaining subnormal levels of oxygen in babies beyond 34–36 weeks of age with chronic lung disease, and I trust that this paper will not encourage such practice.

ROB PRIMHAK
Senior Lecturer in Respiratory Paediatrics, Sheffield Children's Hospital, r.a.primhak@sheffield.ac.uk

Oxygen saturation and retinopathy of prematurity—Authors' response

EDITOR,—We are happy to make it clear that we have never suggested that hypoxia is "beneficial" to babies with chronic lung disease. Indeed in describing our own practice we said, quite specifically, that "babies who were at least 8 weeks old (and it should be remembered that all our babies were born more than 12 weeks early), and whose retinal vasculature was mature, received liberal oxygen supplementation." We would, however, remind Dr Primhak that those babies in the recent STOP-ROP trial who were given enough supplemental oxygen to maintain a saturation of 96–99% (to see if this reduced the severity of the retinopathy they had already developed) developed significantly more pulmonary problems than those only given enough oxygen to maintain a saturation of 89–94%.

The idea that oxygen is always a "good thing" dies hard. Iles and Edmunds showed that babies with a saturation below 90% in air at discharge were more likely to have a frightening change in their oxygenation, e.g. sudden change in muscle tone during the subsequent three month study period, but they did not show that this risk was reduced by reducing oxygen. There is equally little objective evidence that offering sustained supplemental oxygen actually does reduce the incidence of troublesome pulmonary hypertension.

WIN TIN
Department of Paediatrics, South Cleveland Hospital, Middlesbrough TS4 3BW, UK

DAVID MILLIGAN
Philippa Pennefather
Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK

Two sacred cows of neonatal intensive care

EDITOR,—I read the descriptive study of Tin et al with considerable interest. In essence it challenges two sacred cows of neonatal intensive care, whether intra-arterial monitoring is necessary, and what is the appropriate PaO2 at which to nurse critically ill babies.

ARterial monitoring
They do not give us accurate details of arterial catheter use. There is a hint that they are used for less frequent monitoring than arterial catheters were to SpO2 and capillary measurements. Nor do they tell us what analgesia is used for multiple capillary samples.

A fundamental principle of neonatal intensive care is minimal handling, and indwelling arterial catheters allow all samples to be taken with no or minimal disturbance, and if the catheters are umbilical, they can also be used safely for virtually all infusions including TPN. Furthermore, as opposed to oscillometric techniques, they allow accurate blood pressure recordings.

Surprisingly, the literature, and my own clinical experience, is that various complications of UAC are much more common in term infants, and within 48–72 hours of insertion, so that 28/32 babies leaving UAC in situ for many days is unlikely to have a major impact on the putative complication rate of this procedure that induces anxiety in neonatologists.

Local analgesia for heel pricks is surprisingly ineffective even if applied for (impractically) long periods prior to puncture. If general analgesia with, say, morphine is being used the manipulation involved in capillary sampling is still likely to result in the changes in oxygenation (and thus intracerebral haemodynamics with potentially damaging sequelae), that were so graphically illustrated in many papers in the 1970s and 1980s with continuous PaO2 and tcPO2 monitoring became available.

To inflict frequent painful capillary sampling procedures on an unstable 28/52 800 G neonate in the first week of life where blood gas sampling may be necessary at least 2–3 hourly could at best be described as ill judged, at worst negligent.

APPROPRIATE PAO2
They rightly say, running babies at SpO2 levels of 70–90 (PaO2 approximately 25–40mmHg, 3.3–6 kPa) is a feature of unproven benefit and possibly harmful, but they did not show that this risk was reduced by reducing oxygen. There is equally little objective evidence that offering sustained supplemental oxygen actually does reduce the incidence of troublesome pulmonary hypertension.

WIN TIN
Department of Paediatrics, South Cleveland Hospital, Middlesbrough TS4 3BW, UK

PHILIPPA PENNEFATHER
Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK

Two sacred cows of neonatal intensive care—Authors’ response

EDITOR,—I am glad to have a chance to respond to Dr Roberton’s assertion that the care of the babies nursed using oximeter set-
tings of 70–90% was “negligent”, since I was responsible for these children, but time and space does not allow a full response. Neither
does space allow me to respond to the criticism implicit in your own introductory statement that such care “breaches BAPM
guidelines”.

Dr Roberton says the cerebral palsy rate is “irrelevant”, but parents might not agree. Parents might also be glad that, while 4 chil-
dren monitored using an oximeter alarm set at 80–90%, went blind, no child in the other group went blind. They might also be glad that half were off the ventilator in 7 rather than 22 days, and out of oxygen in 4 rather than 10 weeks. The NHS might be equally grate-
ful for the reduction in cost such an approach delivers. Post delivery growth in the conservatively managed group was only
termed half as much as in the comparator group, even though only a quarter ever received any parenteral nutrition. I am happy to
leave parents to be the judge of whether this was “negligent” care.

Babies were not “kept at 3.3–6.0 kPa for 6–8 hours. In fact, Dr Roberton and I are at
disagreement here because we took the cerebral palsy rate to be 10% in the target saturation group but only 4% in the non-target group. We defined a saturated arterial partial pressure of 5–11 kPa, but alarm settings were more generous than this to discourage staff from adjusting the ventila-
tor every time saturation transiently fell below 80%. Nor was blood pressure monitored by oscillimetry (a technique that is known to be
unreliable), as a proper reading of the paper would reveal. Dr Roberton mistakenly calls our survival rate our mortality rate, compares
survival for mostly black American with that of our white English children, compares sur-
vival to discharge with survival to one year, and says nothing about the reliability with which gestation was documented. The same
issue of your journal contains a better review of survival. We have every intention of following these children, but felt it would be
wrong to wait ten years before reporting the above findings.

Dr Roberton mentions the outcome of a study of 38 children offered corrective surgery for transposition 6 months to 5 years after birth. Those operated on early had a better outcome, but Dr Roberton does not mention the fact that these children had a mean saturation of 68% before operation, and that 8 had a history of acquired central nervous system damage.

However, the main thrust of Dr Roberton’s letter is that lack of an arterial line subjected some problems which we encountered in
using the technique in one of our patients. In the original description the protruding part of the airway is cut into four strands and the upper one cut off. We found the remain-
ing strands rather thick, so cut them to half the width. We found that leucoplast tape was the only tape that held the strands in
place with no additional benefit resulting from the use of Tinc Benz. The strands rubbed badly where they curved over the edge of the
nostril. To overcome this a piece of suction catheter (8F) of just sufficient length to extend over the lateral and medial walls of the
nostril is tied transversely across the tube with a 3/0 silk tie (fig 1). This lifts the three strands off the edge of the nostril and
prevents any rubbing.

In our patient blockage of the airway occurred after formula but not breast milk feeds. It is therefore advisable to suction the
airway after each feed. We used a suction catheter with graduation marks enabling insertion no further than the tip of the airway.
If inserted further the pharyngeal stimulation usually caused vomiting. If a nasogastric tube is also required this can be taped to one of the strands rather than the face. The airway was changed every four to six days, immediately before a feed and alternating between nostrils. Using 1% ligno-
caine drops and smearing the tube with lignocaine jelly reduced crying time after insertion.

Using a modified nasopharyngeal airway in Pierre Robin syndrome

EDITOR,—Masters et al describe how a modified endotracheal tube can be used as a nasopharyngeal airway in infants with
Pierre Robin syndrome. We describe further modifications made to overcome

Figure 1 The modified nasopharyngeal airway in place.

EDMUND HEY
Retired Consultant Paediatrician,
Newcastle, UK
shey@easynet.co.uk

1 Northern Neonatal Nursing Initiative. Systolic
blood pressure in babies of less than 32 weeks
gestation in the first year of life. Arch Dis Child
2 Wantrup U, Tin W, Hey E. Gestational assess-
ment assessed. Arch Dis Child Fetal Neonatal
3 Evans DJ, Levene MI. Evidence of selection bias
in preterm survival studies: a systematic
review. Arch Dis Child Fetal Neonatal Ed
2001;84:F79–84.
Cognitive function and age at repair of transpo-
sition of the great arteries in children. N
Pancuronium prevents pneumothoraces in
ventilated preterm babies who actively expire
against positive pressure ventilation. Lancet
1984;i:1–4.

Using a modified nasopharyngeal airway
in Pierre Robin syndrome

EDITOR,——Masters et al describe how a modified endotracheal tube can be used as a nasopharyngeal airway in infants with
Pierre Robin syndrome. We describe further modifications made to overcome

1 Masters IB, Chung AB, Harris M, O’Neil MC.
Modified nasopharyngeal tube for upper airway
Letters, Book review

J Baker
Department of Child Health
School of Postgraduate Medicine and Health Sciences
Church Lane, Heavitree
Exeter EX2 5QJ, UK

Use of the black area on the tube tip for rapid estimation of insertional depth of endotracheal tubes in neonates: a potential hazard

Editor,—I would like to report on a premature neonate who was intubated unilaterally as a result of improper use of the black area at the endotracheal tube tip. At 29 weeks gestational age, a 1020 g boy was born by emergency caesarean section to a mother who presented with preeclampsia. He was intubated immediately for signs of severe respiratory distress with a 3.0 mm ID tube via the nasotracheal route by the resident on call. The black area of the tube was inserted fully through the vocal cords with the upper rim positioned at the level of the vocal cords. Breath sounds were equally distributed bilaterally and auscultation was normal. The tube was fixated with adhesive tape at 9.5 cm at the nose, after which exogenous surfactant was instilled for treatment of grade 3 idiopathic respiratory distress syndrome. The ensuing clinical course was uneventful and the infant was discharged with signs of mild bronchopulmonary dysplasia several weeks later.

During the evaluation of this incident it was found that the resident who intubated had been taught at another institution that the black area of the tube at the level of the vocal cords would ensure a proper insertional depth. However, the tubes at this other institution were produced by a different manufacturer. This prompted us to measure the actual length of the black area on the neonatal size endotracheal tubes of four major manufacturers. As shown in table 1, the length of the black area varies among tubes from different manufacturers. One manufacturer has adjusted the length of the black area to the size of the patients for which the tube is intended. The others added a fixed length of 30 mm, regardless of tube size and, thus, patient size. The distance from the vocal cords to the carina of a neonate of 1000 g is approximately 30 mm. This explains the endobronchial position following full length insertion of the black area of the endotracheal tube through the vocal cords in our patient. The equal distribution of breath sounds that was used in this case to determine the correct tube position has been shown to be an unreliable parameter for this purpose in neonates.

In conclusion, this report illustrates that caution is required in the use of the black area at the tube tip for rapid estimation of insertional depth of endotracheal tubes in neonates.

H Molendijk
Neonatologist
Department of Pediatrics,
Division of Neonatology,
University Hospital Groningen,
PO Box 30001, 9700 RB Groningen,
The Netherlands
h.molendijk@bkk.azg.nl

Respiratory distress syndrome and antenatal corticosteroid treatment in premature twins

Editor,—Randomised, placebo controlled trials of antenatal corticosteroid administration have not shown a significant reduction in the incidence of respiratory distress syndrome (RDS) in premature infants. Subsequent retrospective studies examining the effect of steroids on twin pregnancies have shown conflicting results.

Further to our recent article, we have investigated the relationship between respiratory distress and antenatal corticosteroid treatment in premature twins from the same historical cohort selected from the Australia and New Zealand Neonatal Network (ANZNN) 1995 database. To reflect best possible clinical practice, the analysis was restricted to the effects of an optimal steroid course (two doses of corticosteroids given, the first dose of which was received more than 24 hours and less than eight days before the infant’s birth) compared with no steroid treatment.

As shown in table 1, treatment with antenatal steroids resulted in a significantly lower incidence of RDS and surfactant use. The reduction from 18% to 11% in the risk of mortality was not significant (p = 0.08). Recent advances in obstetrics and neonatology could explain the absence of an antenatal steroid associated reduction in mortality.

There was no statistically significant association between optimal steroid use and the outcome measures of days of intermittent positive pressure ventilation, days of oxygen, oxygen at 36 weeks corrected gestational age, severe intraventricular haemorrhage, or the number of proven infection episodes. Gestation, sex, race, and birth weight did not modify the association between antenatal steroid treatment and RDS incidence.

The sample examined in this study is over twice the size of the most recent retrospective analysis, which reported no antenatal steroid associated reduction of RDS in twins. However, the reduction in RDS incidence observed in our study is less than that seen in singleton infants (odds ratio 0.35, 95% confidence interval 0.20 to 0.57). Optimal steroid treatment may be less effective in multiple gestation pregnancies because the increased volume of distribution in these mothers may reduce the plasma level of steroids to which the fetuses are exposed.

Table 1: Length of black area at the tip of endotracheal tubes for neonatal use as produced by four major manufacturers

<table>
<thead>
<tr>
<th>Tube (ID)</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rusch</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Portex</td>
<td>20</td>
<td>24</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Vygon (st)</td>
<td>17</td>
<td>19</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Vygon</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Mallinkrodt</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Rusch and Portex tubes had a fixed length of 30 mm from the vocal cords to the carina of a neonate of 1000 g is approximately 30 mm. This explains the endobronchial position following full length insertion of the black area of the endotracheal tube through the vocal cords in our patient. The

Table 1 Effect of antenatal steroids on respiratory distress syndrome (RDS) in premature twins

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Optimal antenatal steroids</th>
<th>No antenatal steroids</th>
<th>Odds ratio (95% CI)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDS</td>
<td>184/310</td>
<td>79/106</td>
<td>0.49 (0.27 to 0.91)</td>
<td>0.02</td>
</tr>
<tr>
<td>Surfactant use</td>
<td>162/333</td>
<td>67/108</td>
<td>0.58 (0.34 to 0.99)</td>
<td>0.05</td>
</tr>
<tr>
<td>Mortality</td>
<td>35/334</td>
<td>20/110</td>
<td>0.53 (0.26 to 1.06)</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Results are number of twin infants affected over number of infants at risk, also expressed as a percentage. Odds ratio and p values were produced by logistic regression with standard errors adjusted for within pair correlation.

Data used for this study came from the Australia and New Zealand Neonatal Network.

DOUG HACKING
ANDREW WATKINS
SIMON FRASER
Department of Paediatrics, Mercy Hospital for Women
Clarendon Street, East Melbourne
Victoria 3002, Australia

RORY WOLFE
TERRY NOLAN
Clinical Epidemiology and Biostatistics Unit
Murdoch Children’s Research Institute
Royal Children’s Hospital and
Department of Paediatrics, University of Melbourne
Melbourne, Victoria 3052, Australia

BOOK REVIEW

Progress in the management of disease in the newborn has carried with it a recognition of the substantial risk of injury to the immature nervous system. The aspiration to localise and prognosticate from neurological signs in the early newborn period is easily understood. The problem is that the signs available to be discerned are in themselves usually insufficient to allow precision. In addition, the child grows and develops, the range and complexity of skills are constantly changing, and the manifestations of the lesion(s) alters, or may become silent, often to reappear later as a different but nevertheless highly significant impairment.

The evaluation of the newborn nervous system was originally based upon concepts learnt from adult neurology. The baby was seen as demonstrating little or no cortical or cerebellar activity and the study of primary reflexes predominated. The approach of adult neurology, with emphasis on localisation of the lesion, becomes less applicable in the younger child. In the newborn period, focal insults to the brain will often give rise to generalised disturbances and, conversely, generalised disturbances may show focal deviations. Recognition of these phenomena has led to a progression from the concept of a localisation based neurology to one which sees the infant displaying a neurological/behavioural repertoire. Over the past several decades Saint Anne Dargassies, Prechtl, Amiel Tison, Brazelton, Dubowitz, and others have, through meticulous study, done much to illuminate this area. Through these studies, awareness of the importance of the behavioural state of the baby, as well as the more detailed neurological items has evolved.

A second problem in this area, particularly in relation to research studies, has been the development of a systematic newborn neurological examination which is reliable and repeatable. This has been the subject of the two editions of this work. The first, published in 1981, gave a detailed, easily understood and applied system for the neonatal neurological examination. The current edition brings that work up to date. New material is presented, refinement of the scheme has occurred, and the examination is described. Items which were less discriminatory of pathology from the 1981 version have been withdrawn and, following the work of Prechtl, more emphasis is placed on the analysis of general movements. There is a further post neonatal to two year old infant neurological examination proforma presented briefly at the end of the text.

The text is essentially a manual on the application of this neurological examination scheme. It is easy to follow and the segments of the examination are presented clearly with excellent photographs and line drawings of each manoeuvre. There is also a useful addendum ("cautionary tales") to each section of the examination, giving guidance on possible pitfalls and sources of error. There is a lot of very useful information on the variations in findings in term and preterm infants, and particularly the changes in the neurological features of preterm infants as they grow towards term. There follows a section on the scheme of optimality scores. This section deals with the results of a survey of 224 normal term infants. In this study each item of the scheme was plotted, and centile values (and thereby optimality scores) were computed. This provides quantification of the assessment, a sense of the range of findings to be expected, and can be useful in correlating lesions observed on neuro imaging with clinical findings. Chapter six deals with the scheme in relation to findings in infants with recognised brain lesions.

The book is not designed to be a text of neonatal neurology and readers looking for discussion of neurological disease states will be disappointed. As a description of a comprehensive and easily applied system of neonatal neurological examination the new edition succeeds admirably.

MICHAEL P SMITH
Neonatal Intensive Care Unit,
Jessop Hospital for Women,
Leavedgreave Road,
Sheffield S7 1BE, UK