LETTERS TO THE EDITOR

“Dewatering” the lungs

Editor,—In response to the commentary by Professor Walters, we must first correct him in referring to our model for the normal alveolus as “dry” when, in fact, it is based on many classical morphological studies demonstrating fluid layers just enough to pool at the septal corners. In proposing that an oligolamellar lining of surface-active phospholipid (SAPL) adsorbed to epithelium “pushes water aside” from the gas-exchange surface, we agree that it is difficult to prove direct binding conclusively. However, any intervening aqueous layer is no more than that normally sandwiched between adjacent planes of polar groups in such structures (Fig 1). Moreover, this physiological milieu contains mobile cations which can neutralise the negative phosphate ions in the SAPL molecules to render them cationic, facilitating their tight binding into a very effective molecular barrier. Hence SAPL is pseudocapacitive.

In citing evidence to support the conventional concept of a continuous liquid layer separating the surfactant lining from alveolar epithelium, Professor Walters refers to the recent study by Bastacky, Cements, and others, who do, indeed, demonstrate such a liquid layer. However, they have created a totally artefactual situation by pre-inflating the liquid layer. The resulting alveolar surface is totally concave with respect to air whereas, in normal air-filled lungs, scanning electron microscopic photographs demonstrate how at least 60% of the alveolar surface is convex as red cells bulge their way through capillaries just beneath the septal walls. Convex interfaces tend to resolve fluid whereas concave surfaces accumulate fluid.

We fully appreciate the classic studies of Professor Walters and his predecessors showing the role of ion-channel water pumps; although it is still a moot point whether β-adrenergic stimulation can increase pump capacity to the level needed to account for such rapid water clearance during normal birth. The vital question seems to be why these pumps are so severely compromised in respiratory distress syndrome that it can take 2–6 days to clear the fluid even after administering exogenous surfactant. To be constructive, it is particularly interesting when they find that “for a secretory organ to be capable of generating a chemical gradient, a barrier must be present to restrict molecular diffusion” and, in the fetal lung, at least, “this barrier resides in the pulmonary epithelium.”

Surely, the oligolamellar SAPL lining shown in our paper by epifluorescence microscopy and by electron microscopy in Fig 1 (for a normal infant) is ideal for this function. Even a multilayer of SAPL bound to a solid can decrease ion permeability by an order of magnitude. It would also seem reasonable that, by spanning intercellular junctions, as seen in Fig 1, SAPL layers not only act as a “first line of defence” against airborne pathogens, but also provide a membrane of known semi-permeability for preventing protein leakage and allowing those proteins to pump water under the known gradients. Thus an adequate lining of epithelial bound SAPL could be vital to both ion-channel and onctic water pumps, in addition to any physical action in “dewatering.”

B A HILLS
I B MASTERS
Paediatric Respiratory Research Centre, Mater Misericordiae Children’s Hospital, South Brisbane, Queensland 4101, Australia.

Figure 1 Electron micrograph of the alveolar wall of a 3 month old infant displaying an oligolamellar lining of SAPL adsorbed to epithelium. Note how it forms a continuous barrier spanning an intercellular junction (arrowed). The bar represents 50 nm.

Cognitive, educational, and behavioural outcomes at 7 to 8 years

Editor,—In our study we referred to research conducted by the Scottish Low Birthweight Study Group on developmental outcomes among a birth cohort of Scottish very low birthweight (VLBW) infants born in 1984. We stated that the Scottish study had yet to publish data on school aged outcomes among this cohort, and further that the study lacked comparative data on outcomes among a general child population sample.

It has been pointed out to us that both of these claims are, in fact, incorrect. The Scottish Group has published findings on the school attainment, cognitive ability, and motor function of their cohort at age 8 years, and included, as part of their analyses, comparative outcome data for a general child sample matched for age and gender with the VLBW cohort and selected from the same school classes in which the VLBW cohort members were enrolled. Our own findings, based on a New Zealand birth cohort, show strong parallels with the Scottish study, particularly in relation to the higher rates of educational problems and poorer cognitive functioning experienced by VLBW children in comparison to their peers. It would have been useful to draw these comparisons in the discussion of our own findings. We very much regret this oversight on our part and apologise to the Scottish Group for our error.

JOHN HORWOOD
NINA MOGRIDGE
BRIAN DARLOW
Department of Paediatrics
The Christchurch School of Medicine
Christchurch Hospital
Christchurch
New Zealand

Diagnostic tests for bacterial infections

Editor,—Fowle and Schmidt reviewed numerous publications on haematological parameters and C reactive protein for the diagnosis of bacterial infections and tried to select these publications according to well chosen criteria. However, they omitted to...
examine the publications for two criteria that substantially influence the study results.

Eight studies on band counts or immature to total neutrophil ratios were reviewed. But only the authors of two studies actually defined how an immature neutrophil was differentiated from a segmented neutrophil—that is, morphological criteria, including the width of the connection between the nuclear segments. Segmented neutrophils are defined variably in published studies: most authors require an indentation of the nucleus to less than a third of the maximal nuclear diameter, but others require an indentation to 50% or that the connections between nuclear segments are filiform. Discrepancies in the definition of bands and segmented neutrophils may be one of the reasons that the results for sensitivity and specificity vary largely between studies.

Diagnostic parameters and especially C-reactive protein have characteristic kinetics in the course of a bacterial infection: C-reactive protein has a low sensitivity at the onset of clinical signs of infection but the sensitivity improves with the course of infection. Unfortunately, Fowlie and Schmidt included two studies in which the timing of blood sampling was not precisely defined.

Alpha-coma in an infant with hypoxic-ischaemic encephalopathy

Editor,—Alpha coma (AC) is the combination of coma and an electroencephalographic (EEG) pattern of synchronous, rhythmic 8–13 Hz activity which has been described in certain severe neurological conditions such as post anoxic or ischaemic encephalopathy, head trauma, brain stem infarcts and drug overdoses. In neonates AC has been associated with chromosomal abnormalities and inborn errors of metabolism and α rhythms have been described transiently during seizure activity. Most reported cases have been associated with a poor outcome.

Case report

A boy weighing 4080 g was born by vaginal delivery following prolonged fetal distress and meconium stained amniotic fluid to non-consanguineous parents. Cesarean section had been refused. Apgar scores were 1, 6, and 7 at 1, 5, and 10 minutes, respectively. At one hour, arterial pH was 7.29, bicarbonate 20 mmol/l, and base deficit 6 mmol/l. The infant developed mild meconium aspiration syndrome that required mechanical ventilation.

Increased tone, fisting of both hands, and blank staring were noted shortly after birth. When 6 hours old, coma and convulsions appeared. Treatment with phenobarbital and subsequently phenytoin was partially effective, with serum concentrations in the therapeutic range. The convulsions diminished and the coma resolved over several days.

Blood count, blood glucose, serum electrolytes, calcium and magnesium and urinary amino and organic acids were normal. Metabolic acidosis was not detected throughout the hospital course. Karyotype was normal.

The EEG on day 3 showed continuous 10–11 Hertz activity with amplitude of 15–40 µV localised over the left parasagittal and temporal regions, with sporadic generalised short bursts of mixed frequencies and sharp waves not associated with clinical correlates. Marked suppression of cortical activity was recorded over the right hemisphere with occasional 10–11 Hertz 0 of 10 µV amplitude. (fig 1). The EEG showed burst-suppression pattern on day 4 (fig 2) and prolonged

Letters

Drs Fowlie and Schmidt respond:

Editor,—Franz and Pohlandt raise interesting points. We agree that differences in how the various tests were carried out may explain some of the heterogeneity in the results. In addition, only 51% of the studies included in the review described the test in sufficient detail such that it could be repeated so the extent of this problem was unknown. This was one of the reasons why we decided not to perform a meta-analysis of the results for any given test.

We did not set out to examine the usefulness of serial testing, but agree it is an area that may merit further investigation. However, it is important to bear in mind why diagnostic tests are performed: although the accuracy of tests may improve as the disease progresses, serial results or “late” results cannot help in deciding whether or not to start antibiotic treatment when the infant first presents. Equally, as time goes by it becomes more likely that the definitive results of the “gold standard” will become available, thereby giving the clinician the best evidence on which to base a decision whether or not to stop treatment.
polyomorphous delta activity of low to medium amplitude when the child was 3 months old.

A computed tomography scan showed severe bilateral cortical atrophy, basal ganglia infarcts, and periventricular cystic leukomalacia. At 3 years of age, the child had severe spastic quadriplegic cerebral palsy, pseudobulbar palsy, and psychomotor retardation.

In spite of the relatively mild evidence of asphyxia at birth, the intrapartum history, the course of the encephalopathy and the absence of appropriate abnormalities on metabolic or intraventricular hemorrhage. Greater emphasis on the mechanism of action of dexamethasone rather than differing regimens may improve use in small susceptible infants.