Inflammatory bronchopulmonary response of preterm infants with microbial colonisation of the airways at birth

Peter Groneck, Bettina Goetz-Speer, Christian P Speer

Abstract
The inflammatory indicators in the tracheobronchial aspirate (TA) of 81 ventilated preterm infants with microbial colonisation of the airways and in non-colonised neonates were analysed on the first day of life. TA was assessed for chemotactic activity, neutrophil cell count, and concentrations of leukotriene B4, C5a, interleukin-1, interleukin-8, elastase-α1-proteinase inhibitor, free elastase and albumin. Concentrations of mediators were related to concentrations of the secretory component of IgA.

The infants' gestational age was mean (SD) 27.9 (2.0) weeks, birthweight 945 (179) g. In 12 infants (15%) microbial colonisation of the airways was present (Ureaplasma urealyticum n=7; bacteria n=5). Compared with non-colonised neonates (n=69), chemotactic activity, neutrophil count, and concentrations of interleukin-1, leukotriene B4 and elastase-α1-proteinase inhibitor were significantly higher in the colonised group. The difference was most pronounced for IL-1 concentrations, both with and without correction for secretory component. There was also a trend towards increased concentrations of interleukin-8 in the latter group. There were no differences for concentrations of C5a and albumin in the TA of both groups.

It is concluded that airway colonisation with U. urealyticum or bacteria at birth is associated with a clinically relevant bronchopulmonary inflammatory response. Increased concentrations of interleukin-1 in TA on the first day of life may be a marker of perinatal colonisation of the airways.

Keywords: inflammatory response, microbial colonisation, tracheobronchial aspirate, preterm infants.

The possible impact of tracheobronchial colonisation with micro-organisms at birth on the respiratory morbidity of preterm infants has not yet been clarified. Neonatal pneumonia is a well described cause of respiratory insufficiency. However, clinically and radiologically, it is often difficult to distinguish pneumonia from hyaline membrane disease. Additionally, in perinatal infections bacteria are often isolated from different sites of the neonate, and a positive culture in the airways might reflect simple aspiration of contaminated amniotic fluid.

Perinatal infections with Ureaplasma urealyticum have been associated with prolonged respiratory dependency and the development of bronchopulmonary dysplasia. However, the clinical relevance of U. urealyticum detectable in airway fluids for the development of subsequent lung disease has been questioned. Growth of ureaplasma in tracheobronchial aspirates may also reflect aspiration of amniotic fluid. A study of the inflammatory response of the airways would permit a description of the interactions between microorganisms and host immune factors.

The response of neonatal airways to microbial colonisation has only partly been characterised. Increased numbers of neutrophils have been found in the tracheobronchial aspirates of newborns with perinatal infection of the airways. Nearly all of these cells are of fetal origin. Additionally, increased concentrations of interleukin-6 are present in the respiratory fluids of newborns who have sustained prolonged rupture of membranes. Increased leukocyte elastase activity in the tracheal aspirate at birth has been associated with the development of neonatal pulmonary emphysema.

In order to characterise the inflammatory mechanisms involved following perinatal colonisation of the airways, inflammatory indicators in tracheobronchial aspirate were prospectively analysed in infants with positive tracheal cultures for bacterial or U. urealyticum, and compared with those of infants without colonisation of the airways.

Methods
Eighty five preterm infants weighing <1200 g were consecutively admitted to the neonatal intensive care units of the Children's Hospital, Cologne, and the Perinatal Center at the Women's Hospital, Cologne-Holweide, during two periods from 18 June 1991 to 15 October 1992, and from 26 April 1993 to 16 August 1993. Eighty one of the infants had been intubated immediately after birth and were included in this study; 70 of these 81 infants were born by caesarean section and 11 by vaginal delivery.

TA was collected for microbiological cultures including U. urealyticum within the first hour. No tests for the presence of Chlamydia trachomatis or cultures for viruses were done. Primary care and subsequent nursery procedures during the first 14 days were performed.
with sterile gloves. Intravenous antibiotics (mezlocillin and gentamycin) were started in 79 of the infants within the first 10 days of obtaining tracheal cultures. All infants with respiratory distress syndrome (RDS) were treated with natural porcine surfactant.11 RDS was diagnosed from a typical chest radiograph, oxygen dependency, and clinical signs of respiratory distress. Bronchopulmonary dysplasia (BPD) was defined as oxygen dependency and radiological abnormalities on day 28.

To characterise the inflammatory response, the chemotactic activity of TA, neutrophil count, and concentrations of inflammatory mediators were evaluated in infants with tracheal cultures positive for bacteria or Ureaplasma, and in infants with no growth of these micro-organisms in TA.

When aspiration of the airways was indicated clinically, tracheobronchial aspirate was collected three times during the first 24 hours of life. Tracheobronchial aspiration was performed by instillation of 0.5 ml 0.9% NaCl into the endotracheal tube. Suction catheters were inserted slightly beyond the distal tip of the tube; lung and airway secretions were suctioned and collected in sterile specimen traps (Vigon, Ecouen, France). TA was diluted with 0.9% saline to a total volume of 0.5 ml, centrifuged at 3000 rpm for 5 minutes, and cell free supernatant fluids were frozen at −30°C for later assays. Over 24 hours, one specimen was obtained in each eight hour period. Immediately before the biochemical analysis of TA, the three samples from one day were pooled.

Specimens for U urealyticum were obtained during suctioning of the trachea within one hour of birth. The suction catheter was attached to a sterile mucus trap. For transport to the laboratory, the specimens were then put into a Ureaplasma culture medium. Specimens were inoculated onto A-7 Ureaplasma differential agar plates. Specimens were also inoculated into a fluid medium (U-9). The inoculated plates and tubes were incubated anaerobically for five days and were observed for growth every 24–48 hours. Ureaplasma was identified by colonial morphology (plates) or urease activity (tubes). The transport medium, the A-7 agar, and the U-9 medium were prepared by the laboratory.

Specimens for bacteriological cultures were obtained within the first hour of life. The suction catheter was attached to a sterile mucus trap. The specimens were transported to the laboratory within the trap, and cultures were performed using blood and MacConkey agar plates.

After centrifugation of tracheal aspirate samples, the cells were resuspended with 150 ul of 0.9% saline, and a total white cell count was performed using a haemocytometer. A differential blood count was obtained after Pappenheim staining of a cytocentrifuged cell sample.

Assay of chemotactic activity and assays for C5a and elastase activity were performed as described before.12 13 Assays for interleukin-1 (Quantikine; R&D Systems Inc, Minneapolis, USA, sensitivity 0.3 pg/ml), interleukin-8 (Amersham Corporation, Aylesbury, United Kingdom, sensitivity 4.7 pg/ml), leukotriene B4 (Amersham Corporation, Aylesbury, United Kingdom, sensitivity 6 pg/ml), elastase-α1-proteinase inhibitor (Merok, Darmstadt, Germany, sensitivity 40 ng/ml) were performed according to the manufacturers’ instructions.

To avoid errors resulting from the sampling procedure, concentrations of inflammatory mediators measured in TA were related to concentrations of the secretory component as the reference protein. Secretory component concentration in lung effluent fluid is independent of capillary leak and not affected by gestational or postnatal age during the first month of life.14 Assays for secretory component were performed, as described before.12 Chemotactic activity and numbers of neutrophils in TA were not related to secretory component.

As some of the data were not normally distributed, values were expressed as median (25th–75th percentile) or as median (range). Two group comparisons were performed using the Mann Whitney U test. Significance was accepted at P<0.05. Demographic data were expressed as mean (SD). Differences in numbers of patients with detectable activity of free elastase in TA were compared between both groups using the χ² test.

Results
Mean gestational age and birthweight of all 81 patients was 27·9 (2-0) weeks and 945 (179) g. Ten infants died during the first 10 days. There were four late deaths after day 28; overall survival rate was 83%. Microbial colonisation of the airways was present in 12 patients (U urealyticum n=7, Escherichia coli n=4, Staphylococcus aureus n=1); in 69 patients the cultures were negative. Group B streptococci were not isolated during the study period.

No differences were found in gestational age, birthweight, gender, rate of caesarean section or use of prenatal steroids between both groups. Premature rupture of membranes and maternal signs of infection were more often present in neonates with colonised airways (table 1). RDS was diagnosed more often in the non-colonised group than in the

Table 1 Demographic characterisation and outcome data of patients

<table>
<thead>
<tr>
<th></th>
<th>Colonised neonates</th>
<th>Non-colonised neonates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=12)</td>
<td>(n=69)</td>
</tr>
<tr>
<td>Mean (SE) birthweight (g)</td>
<td>944 (55)</td>
<td>948 (23)</td>
</tr>
<tr>
<td>Mean (SE) gestational age (weeks)</td>
<td>27·5 (6·6)</td>
<td>28·0 (6·2)</td>
</tr>
<tr>
<td>Female %</td>
<td>50</td>
<td>48</td>
</tr>
<tr>
<td>Caesarean section %</td>
<td>75</td>
<td>88</td>
</tr>
<tr>
<td>Premature rupture of membranes %</td>
<td>66</td>
<td>69</td>
</tr>
<tr>
<td>PROM >24 h %</td>
<td>67**</td>
<td>19</td>
</tr>
<tr>
<td>Maternal signs of infection %</td>
<td>50*</td>
<td>18</td>
</tr>
<tr>
<td>Maternal antibiotics %</td>
<td>50</td>
<td>21</td>
</tr>
<tr>
<td>RDS %</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>BPD %</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Dexanethasone treatment %</td>
<td>41</td>
<td>41</td>
</tr>
</tbody>
</table>

PROM: premature rupture of membranes; maternal signs of infection include fever >38°C and/or peripheral blood leukocytosis >20 000 cells/μl.
coloured group. In all three infants with perinatal airway colonisation and respiratory distress (suspected neonatal pneumonia) E coli were isolated from the respiratory secretions. It was not possible in these infants to distinguish the chest radiograph from RDS. The rate of BPD, and the number of infants treated with dexamethasone, were no different in either group (table 1).

Chemotactic activity, neutrophil count, and concentrations of LTB4, IL-1, Ea,PI, and number of infants with free elastase in TA were significantly higher in the colonised group compared with non-colonised infants (table 2). The most pronounced difference between both groups was seen in the concentration of IL-1, which was 20-fold higher in colonised infants. When not related to secretory component, concentrations of IL-1 were 157 ng/l (108-464), and 3.2 ng/l (0-14.1), respectively (median 25th-75th percentile, P<0.01 (figure). Eleven of 12 infants with tracheal colonisation had IL-1 concentrations exceeding 100 ng/l in contrast to only three of 69 non-colonised infants (sensitivity 0.92 (95% confidence interval 0.62-1.0); specificity 0.96 (95% CI 0.88-0.99); positive predictive value 0.79 (95% CI 0.49-0.95); negative predictive value 0.98 (95% CI 0.92-1.0)). When corrected for secretory component, IL-1 concentrations of more than 15 ng/ml had a sensitivity of 0.92 (95% CI 0.62-1.0); specificity 0.93 (95% CI 0.84-0.98); positive predictive value 0.69 (95% CI 0.41-0.89); negative predictive value 0.98 (95% CI 0.92-1.0).

Discussion

In this study preterm infants with positive cultures for bacteria or U urealyticum in airway secretions on the first day of life exhibited a significant inflammatory bronchopulmonary response. Chemotactic activity, numbers of neutrophils, and concentrations of interleukin-1, leukotriene B4, and Ea,PI were increased in tracheobronchial secretions compared with non-colonised neonates.

IL-1 is one of the most important cytokines regulating the inflammatory response. It is released locally by alveolar macrophages after stimulation with bacterial toxins or during phagocytosis of micro-organisms. In animal models intratracheal instillation of endotoxin induces an intra-alveolar inflammatory reaction composed of a neutrophilic exudate peaking at 6-12 hours, a monocyte exudate peaking at 24 hours, and a lymphocyte exudate that peaked at 48 hours. The kinetics and magnitude of this sequence were reproduced by intratracheal injection of IL-1 and blocked by IL-1-receptor antagonist. Gram positive bacteria initiate macrophage activation by lipoteichoic acid. The mechanism of macrophage activation by micro-organisms without a cell wall, such as U urealyticum, has not been identified yet. In children with bacterial pulmonary infections increased IL-1 concentrations are found in bronchoalveolar washings. Our study also pinpointed substantially increased concentrations of IL-1 in.
the TA of infants with growth of bacteria or *U. urealyticum*. IL-1 concentrations in TA exceeding 100 ng/ml may be a diagnostic marker for local microbial airway colonisation. However, there were no differences in IL-1 concentrations between infected infants with clinical signs of respiratory distress (suspected neonatal pneumonia), and infants with a positive culture but without respiratory disease. Thus IL-1 concentrations in pulmonary effluent fluid do not differentiate between a local host response towards tracheal colonisation or pneumonia.

Following stimulation by microbial products, as well as during phagocytosis of microorganisms, macrophages release factors that recruit neutrophils. Chemotactic activity of TA towards neutrophils was significantly higher in infants with colonised airways compared with non-colonised infants. Increased chemotactic activity of bronchoalveolar fluid together with increased concentrations of LTB₄ and C5a have also been found in adults with pneumonia. The generation of C5a as well as IL-8 was increased in the respiratory fluid of infants with cystic fibrosis and *Pseudomonas aeruginosa* colonisation. In adults with chronic airway disease the neutrophil chemotactic activity of bronchoalveolar lavage was related to LTB₄, C5a, and IL-8. Increased concentrations of IL-8 were found in the airway secretions of ventilated patients during the development of nosocomial pneumonia. Fibroblasts infected with *U. urealyticum* in vitro secrete large amounts of IL-8. In our study LTB₄ concentrations were fourfold higher in TA colonised with micro-organisms than in infants with sterile lung effluent. High LTB₄ concentrations indicate that this mediator is an important chemoattractant in local microbial infection. The source of LTB₄ may be macrophages or the neutrophils themselves. However, *U. urealyticum* produces phospholipase A and C, which can catalyse the release of arachidonic acid, the precursor of LTB₄ from membrane phospholipid stores. In contrast to LTB₄ concentrations, those of IL-8 were only slightly higher in colonised neonates compared with the non-colonised group, and there was no difference for C5a. These chemoattractants may also be generated in larger amounts within the airways following other stimuli like barotrauma or oxygen toxicity during mechanical ventilation for RDS.

As a result of increased chemotactic activity of respiratory fluids neutrophils are attracted into the airways. In our study neutrophil count was higher in TA with perinatal colonisation. This has been described by others. Activated neutrophils release elastase, which is bound by α₁-proteinase inhibitor and antileucoprotease present in the respiratory fluid. In this study elastase-α₁-proteinase inhibitor concentrations were significantly higher in infants with colonised secretions than in infants with sterile airway fluid. Free elastase was also more frequently present in the TA of infants with airway colonisation. Increased amounts of elastase α₁-proteinase inhibitor have been found in the tracheal secretions of newborns with bacterial airway colonisation. In half of the patients with pneumonia free functional extracellular elastase was found that was not bound to α₁-proteinase inhibitor. Additionally, free elastase was detected in the TA of patients with cystic fibrosis and colonisation with *Pseudomonas aeruginosa*, and in long term ventilated infants with BPD and nosocomial airway infection. The presence of free elastase in TA has been associated with increased early respiratory morbidity in preterm infants with RDS.

Increased concentrations of inflammatory mediators have also been found in tracheal secretions of infants with BPD. During the development of this disease, airway inflammation did not seem to be related to infection, but rather non-specific injury from oxygen toxicity and barotrauma. The concentrations of mediators in TA were lower than those found in infected secretions studied here. In another study airway infection at birth was associated with the development of Wilson-Mikity syndrome. The impact of microbial colonisation of the airways during mechanical ventilation on the development of neonatal chronic lung diseases should be evaluated in further studies.

In conclusion, this study has shown that preterm infants with positive cultures for bacteria or *U. urealyticum* in airway secretions on the first day of life exhibit a significant inflammatory bronchopulmonary response, with evidence for local macrophage activation, neutrophil recruitment into the airways, and increased secretion of neutrophil products. However, as not all of these infants had respiratory symptoms, the results do not allow us to distinguish between a local host response against colonisation and bronchopulmonary infection. An increased concentration of interleukin-1 in the TA on the first day of life may be a marker of perinatal colonisation of the airways.

Supported by a grant from Deutsche Forschungsgemeinschaft (Sp 239/4-1).

Table 3

<table>
<thead>
<tr>
<th>Colonisation with U urealyticum (n = 7)</th>
<th>Bacterial colonisation (n = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemotactic activity (MD in μm)</td>
<td>141 (93–168)</td>
</tr>
<tr>
<td>Neutrophil count (cells/μl)</td>
<td>900 (770–3500)</td>
</tr>
<tr>
<td>Interleukin-1 (ng/ml SC)</td>
<td>25.9 (17.5–119)</td>
</tr>
<tr>
<td>Leukotriene B₄ (ng/l SC)</td>
<td>31.5 (16.5–187)</td>
</tr>
<tr>
<td>C5a (ng/ml SC)</td>
<td>508 (72–721)</td>
</tr>
<tr>
<td>Interleukin-8 (ng/ml SC)</td>
<td>1721 (569–2760)</td>
</tr>
<tr>
<td>Elastase (μg/ml SC)</td>
<td>222 (133–720)</td>
</tr>
<tr>
<td>Free elastase (No of patients/total)</td>
<td>5/7</td>
</tr>
</tbody>
</table>

Number of patients with detectable activity of free elastase/total number of patients, all other values: median (range). MD means miratory distance of peripheral blood neutrophils exposed to tracheobronchial aspirate fluid. SC: secretory component.