LETTERS TO THE EDITOR

Need to avoid bias in controlled trials

EDITOR,—It is accepted practice that in all quantitative research statistical tests should be used to estimate the likelihood that findings arose by chance and that authors should avoid overinterpreting data where these tests suggest that the likelihood is high. It is also accepted that to avoid bias in the analysis of randomised controlled trials clinically important endpoints must be specified in advance.

A recent report of a clinical trial of two different surfactant preparations illustrates the dangers of neglecting these guidelines.1 Although infants in the group treated with one of the preparations appeared to fair better on the pre-determined clinical endpoints, none of the differences approached conventional levels of significance. The paper also reports data on a number of intermediate measures of oxygenation and ventilatory requirements, outcomes which the authors specifically state were not established at the design stage, where on some occasions, although not on others, differences do reach conventional levels of significance.

In the discussion the authors begin by noting the need for caution in the interpretation of the results from this small study but, unfortunately, provided their own reasoning. They interpret the data on intermediate endpoints as demonstrating improved lung function in babies treated with Curosurf and devote much of the discussion to trying to rule out the possibility that Curosurf is the more effective agent. They conclude the paper by stating their belief that Curosurf is more effective at improving oxygenation and reducing ventilatory requirements than Survanta in the first 24 hours. They remind readers of the ‘trend’ towards lower incidence of adverse outcomes in the Curosurf group and suggest the need for these results to be confirmed in a larger randomised controlled trial1. The clear implication of their comments is that they believe that they have demonstrated that Curosurf is more effective than Survanta.

The correct interpretation of the data presented is that the results would be compatible with Curosurf being either considerably better or considerably worse than Survanta at preventing the development of adverse clinical outcomes. The authors specifically mention that patients treated with Curosurf had a lower incidence of pneumothorax, intracerebral haemorrhage grades 3–4, and mortality: in fact, the adjusted 95% confidence limits of the odds ratios for each of these outcomes associated with being treated with Curosurf rather than Survanta are 0.08–2.88, 0.02–2.54, respectively, which suggests a high probability that these results are due to chance. There is always a temptation to overinterpret data from studies which are too small to provide answers to the questions addressed. In this particular paper there is the added concern that the drug favoured by the authors’ discussion, on the basis of inappropriate interpretation of the data, is manufactured by the company which sponsored the research.

STUART LOGAN
Department of Epidemiology and Biostatistics,
Institute of Child Health,
London WC1N 1EH

Raised cerebral arterial blood flow velocity

EDITOR,—Scherjon et al’s findings2 of raised cerebral artery blood flow velocity (CABFV) in infants who had evidence of fetal brain sparing are very similar to our previously published findings3 of a raised CABFV at 3 days of age in small for gestational age (SGA) infants weighing less than 1500 g. Two thirds of the patients in our study had evidence of fetal redistribution of blood flow, with absent end diastolic flow in the umbilical artery. Postnatally, we also found persistently lowered coeliac axis, superior mesenteric artery, and renal artery blood flow velocities, indicating that ongoing redistribution of blood flow in SGA babies affects the whole circulation.

Scherjon et al did not find an association between blood pressure and CABFV, whereas we found that for appropriately grown infants a multiple regression analysis indicated a significant correlation between blood pressure, carbon dioxide tension, and CABFV.4,5 We carried out an identical multiple regression analysis, using data from 16 SGA infants weighing less than 1500 g at birth who had invasive monitoring of blood pressure through umbilical or peripheral arterial lines. Measurements of blood flow velocity in the anterior cerebral artery were made at the same stage as for the appropriately grown infants.6 For the SGA infants there was no effect of blood pressure, although there was an effect of carbon dioxide tension (table).

Correlation coefficients from multiple regression analysis of effects of mean arterial blood pressure (MABP), PaCO2 and PaO2 on anterior cerebral artery blood flow velocity

<table>
<thead>
<tr>
<th>MABP</th>
<th>PaCO2</th>
<th>PaO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appropriately grown (n=16)</td>
<td>MABP</td>
<td>PaCO2</td>
</tr>
<tr>
<td>0.70***</td>
<td>0.64***</td>
<td>0.31</td>
</tr>
<tr>
<td>0.14</td>
<td>0.40*</td>
<td>0.48</td>
</tr>
</tbody>
</table>
| *p<0.05, ***p<0.001.

We suggest that Scherjon et al’s failure to find an effect of blood pressure on CABFV may be due to the lack of such effects in the SGA group only. The antenatal experiences of the fetus may modify the responses of many parts of the circulation, producing both baseline changes and differences in the way the circulation responds to factors such as blood pressure. Circulatory data from appropriately grown and SGA babies should probably be analysed separately, and as we understand more, it may be that our management of the circulation should also be different in these babies.

STEVE KEMPLEY
Royal London Hospital,
Whitechapel, London E1 1BB

HAROLD GAMSI
King’s College Hospital,
Denmark Hill,
London SE5

1 Scherjon SA, Oosting H, Kok JH, Zondervan HA. Effect of fetal brainsparing on the early

Dr Scherjon comments:
The most obvious difference in the analysis presented in the letter of Kempley et al and our study is that our analysis is based on 10 longitudinal measurements, instead of two postnatal measurements. We are therefore able to analyse the contribution of several variables to a repeated measurement model.

We used values of MAP and PCO2 (as did Kempley), but also analysed both variables as covariates changing over time. Thus the effect of MAP and PCO2, both on the patient specific level of CBVF and the within patient time course on CBVF could be estimated. Secondly, our model included gestational age as a possible confounding variable. The latter seems to be essential in the interpretation of the results. Growth retardation (IUGR) was defined by a raised antenatal umbilical/cerebral pulsatility index ratio (U'/C'); an index indicating fetal haemodynamic redistribution and very strictly related to neonatal birthweight.1 For this reply a more classic definition of SGA, using the fetal growth ratio (FGR), was used. The lower limit for appropriate fetal growth was 80%, corresponding to the 4.3 birthweight centile.2 If gestational age is not included in the model (table 1) MAP has a significant contribution to CBVF; if gestational age is included in the model its contribution disappears. Interestingly, the interaction component between IUGR grouping and MAP nadir appeared to be significant only for the IUGR group. This suggests that there might be a different effect of MAP nadir on CBVF for IUGR compared with non-IUGR infants (IUGR defined by FGR and not by the U'/C' ratio).

We therefore repeated the analysis for the two growth retardation definitions. For the normal FGR infants and not for the normal U'/C' ratio group we found a significant contribution of the time course of blood pressure changes on CBVF changes, but the absolute levels of MAP seem to have no contribution to the model (table 2).

IUGR 0–00

We agree with Kempley that there seems to be a different setting for the regulation of CBVF between appropriately grown and SGA neonates, although we did find the effect when FGR alone is used as the definition of SGA. We also could not show the effect for the absolute MAP values on CBVF. It might be, as was suggested in the original article, that SGA is associated with a more stable CBVF, and therefore this would explain the lower incidence of severe intracranial pathology found in the growth retarded group.

SICCO SCHERJON
HANS OOSTING
HANS ZONDERVAN
Departments of Obstetrics,
Clinical Epidemiology and Biostatistics
and Neonatology,
Academic Medical Centre (H-A255),
University of Amsterdam,
PO Box 21700,
1100 DE Amsterdam,
The Netherlands

Neonatal abstinence syndrome

Editor,—Our clinical experience of neonatal abstinence syndrome (NAS) differs from that in Liverpool described by Shaw and McIvor, who focused on methadone.1 During the period 1989–94 inclusive, we identified 39 babies at risk of NAS. Of these, two (5%) had mothers with a history of drug use who denied current use, one (3%) mother took codeine, five (13%) used heroin, 22 (56%) used methadone and nine (23%) did not use opiates at all (largely alcohol and amphetamines). Of the mothers using methadone, five (23%) took methadone alone, eight (36%) took heroin in early pregnancy followed by methadone as part of a detoxification regimen, and nine (41%) were polypharmacy users.

The median time for onset of withdrawal for the methadone group was 30 hours (range 0–7 days) and for the heroin group 1.5 (range 1–2) days. Median duration of medical treatment for the methadone group was 23 (range 8–80) days and for the heroin group, 4.5 (range 0–8) days. The median length of stay in hospital for the methadone group was 22.5 (range 6–107) days— one baby was successfully withdrawn from morphine at home under close supervision—the median for the heroin group was 12.5 (range 7–15) days.

Of the babies exposed to methadone, 18 (81%) were placed at home, the others being fostered. Follow up appointments at this hospital were kept by 12 (55%) babies, two (9%) attended for appointments at referring hospitals, two (9%) moved and were offered follow up with a local paediatrician (outcome unknown), and six (27%) were chronic non-attenders. Of the heroin group, one baby was adopted and the rest stayed with their mothers. Two (40%) were followed up on more than one occasion, one attended outpatients only once, and two (40%) never attended. There was one death in a baby exposed to methadone and heroin who died at the age of 6 weeks from meningococcal septicaemia.

Even though the Liverpool figures suggest an earlier and less severe withdrawal from methadone than has previously been suggested2 we cannot be certain that the mothers were not taking heroin in addition to methadone. Our figures suggest a longer period of onset and a more protracted course of NAS with methadone. We would caution paediatricians to be aware of the pattern of local drug use before altering observation policy for NAS on the basis of one paper.

M L WRIGHT
M J ROBINSON
Neonatal Intensive Care Unit,
Hope Hospital, Scott Lane,
Salford M6 8DQ

Pros and cons of antiseptic cord care

Editor,—A recent letter points out that antiseptic agents may delay separation of the umbilical cord.1 However, certain agents can hasten cord separation. This has public health implications. In many non-industrial settings the period from birth to cord separation is an important rite of passage during which varied social and dietary taboos are observed.

Among the pastoralist people of southern Sudan, where neonatal tetanus is common and seems to be related to traditional cord care techniques,2 cord care kits were promoted in the 1980s. We interviewed mothers of babies with tetanus neonatorum (n=35, unpublished data) none had used cord care kits. Seventy five per cent had applied earth to the cord which had been collected from a number of important sites. When asked why this was done most replied that it helped to expedite the process of cord separation. In traditional village culture in this region mother and baby are segregated in the hut and extensive dietary restrictions are enforced until the cord separates, when mother and infant become the focus of a collective feast. Women prefer

Table 1 Variables significantly contributing to the model: repeated measurements model

<table>
<thead>
<tr>
<th>Model</th>
<th>U'IC' * ratio</th>
<th>U'IC' * ratio</th>
<th>FGR ratio</th>
<th>FGR ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>GA</td>
<td>Not included</td>
<td>0.00</td>
<td>Not included</td>
<td>0.00</td>
</tr>
<tr>
<td>IUGR</td>
<td>0.00</td>
<td>0.04</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>IUGR*MAP</td>
<td>0.14</td>
<td>0.16</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>CO2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.15</td>
</tr>
<tr>
<td>MAP</td>
<td>0.00</td>
<td>0.18</td>
<td>0.23</td>
<td>0.23</td>
</tr>
</tbody>
</table>

GA: gestational age; IUGR: fetal growth retardation as defined by U'IC' ratio or FGR; MAP: mean arterial blood pressure; CO2: transcutaneous PCO2; *interaction component between MAP and IUGR.

Table 2 Variables significantly contributing to the model: repeated measurements model

<table>
<thead>
<tr>
<th>Model</th>
<th>U'IC' ratio</th>
<th>U'IC' ratio</th>
<th>FGR ratio</th>
<th>FGR ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Gestational age</td>
<td>0.01</td>
<td>0.04</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>CO2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>MAP</td>
<td>0.07</td>
<td>0.16</td>
<td>0.02</td>
<td>0.17</td>
</tr>
</tbody>
</table>

FGR ratio: normal (n=63)

-0.36 -0.27 -0.26 -0.17