posthaemorrhagic hydrocephalus, we should ask whether the aim of treatment is to maintain CSF pressure within the normal range, regardless of other circulatory factors, or whether the maintenance of cerebral perfusion is more important.

The wide normal range of cerebral artery BFV does mean that a single 'action line' is not appropriate for all infants. Study of longitudinal changes in individual infants may be a more fruitful approach which requires further investigation.


Maternal carboxyhaemoglobinemia

EDITOR,—We wish to report a case of maternal carboxyhaemoglobinemia which resulted in evidence of fetal compromise and delivery by cesarean section. We believe the case highlights both a lack of management guidelines and adequate facilities for treating this serious condition in pregnancy.

Case report

A 21 year old, non-smoking primigravida at 39 weeks’ gestation accidentally inhaled carbon monoxide from a faulty gas heater for approximately two hours. On arrival at accident and emergency, three hours later, she had a headache, felt drowsy, and had reduced fetal movements (blood pressure 155/75, pulse 100/min). She had been transferred in oxygen and had normal arterial blood gases (pH 7.43, carbon dioxide tension 4.27 kPa, oxygen tension 14.7 kPa, base excess -2.2 mmol/l) but the carboxyhaemoglobin percentage was raised at 13%. Fetal heart monitoring revealed fetal tachycardia, diminished variability, and decelerations. Emergency caesarean section was performed and 10 minutes after delivery a maternal carboxyhaemoglobin estimation was 3%.

The girl, with a birth weight of 3590 g, had normal Apgar scores and the carboxyhaemoglobin level in cord blood was 16.2%. After delivery no neurological compromise was noted and blood gases remained satisfactory in air. Mother and child were subsequently discharged at 5 days and no problems were noted at follow up.

Faulty gas heaters remain a major reason for 1000 deaths annually from carbon monoxide poisoning. Stillbirths have been recorded at relatively low maternal levels of carboxyhaemoglobin because fetal carbon monoxide concentrations can exceed maternal concentrations. In this case there is also an additional shift of the fetal haemoglobin dissociation curve to the left. In this case we encountered a pregnant patient with mild to moderate carboxyhaemoglobinemia who was symptomatic with evidence of fetal distress. Some authorities, particularly in the US, would advocate hyperbaric oxygen (HBO) in this situation, which might avoid serious complications in the future. However, we suggest more investigation is needed into the risk of serious complications associated with HBO.


Ureaplasma and mycoplasma central nervous system infections in neonates

EDITOR,—Waite et al describe two studies in Birmingham, Alabama in which Mycoplasma hominis and Ureaplasma urealyticum were isolated from the cerebrospinal fluid (CSF) of neonates.1,2 In the first study of 100 predominately preterm babies, U urealyticum and M hominis were isolated from the CSF of eight and five of the neonates respectively. The mothers were generally of low socioeconomic status and few had received antenatal care. In their second study, of 318 predominately full term neonates, the mothers of whom had received private obstetric care, U urealyticum and M hominis were isolated from five of nine infants.3,4 They suggested that culture for these organisms should be attempted on all CSF specimens from neonates with progressive hydrocephalus, CSF pleocytosis, or evidence of congenital infection.5

We prospectively studied the babies admitted to our neonatal intensive care unit over a 15 month period. We cultured 42 CSF specimens from 35 neonates for M hominis and U urealyticum, as part of the microbiological investigation of suspected sepsis or therapeutic tap for hydrocephalus. The mean gestational age was 32 weeks (range 24-41 weeks), mean birth weight 2140 g (range 700-4400 g), and mean age at first sampling was 10 days (range 8-35 days). The mothers were from varied socioeconomic backgrounds and all had received antenatal care.

No CSF specimen yielded a growth of M hominis or U urealyticum. Although our study is small, our findings are more in line with the results of Foy et al and Van den Berghe H. A new lethal syndrome with cloudy cornea, diaphragmatic defects and distal limb deformities. Hum Genet 1990; 86: 60-70.


REFERENCES


Congenital diaphragmatic hernia: influence of associated malformations on survival

EDITOR,—In the interesting article by Sweed and Puri they made no mention of an important autosomal recessive condition that includes congenital diaphragmatic hernia. Fryns’ syndrome describes infants who have severe diaphragmatic hernia associated with skeletal, palatal, and renal abnormalities.1,2 The outcome for infants with Fryns’ syndrome is universally poor. Rapid identification of this syndrome in a baby born in our unit with severe diaphragmatic hernia enabled us to save the child and family the trauma of an emergency transfer to a surgical unit, so that the baby could die with peace and dignity with both parents in attendance. Urgent diagnosis was achieved through immediate access to regional colleagues in neonatology and clinical genetics. In this case, in addition to a diaphragmatic hernia, there was cleft palate, palpable polycystic right kidney, facial dysmorphic features of mid-face hypoplasia, and a small left pinna and hypoplastic nails. This recessive inherited syndrome is not uncommon, and rapid identification of the diaphragmatic hernia reported in the Northern region between 1985 and 1992, five (4%) had Fryns’ syndrome (Edmund Hey, personal communication). Knowledge of this syndrome, therefore, with its implications for immediate care and the risks in future pregnancies is important for colleagues working with newborn babies.

P M JONES
Children’s Services, Health Centre, Escomb Road, Bishop Auckland, Co Durham DL14 6AB

REFERENCES