Thresholds for surfactant use in preterm neonates: a network meta-analysis

Aoife Branagan 1,2, Ivan Yu 1,2 Kurinchi Gurusamy 2,3 Jan Miletin 1,4,5,6

ABSTRACT
Objective To perform a network meta-analysis of randomised controlled trials of different surfactant treatment strategies for respiratory distress syndrome (RDS) to assess if a certain fraction of inspired oxygen (FiO₂) is optimal for selective surfactant therapy.
Design Systematic review and network meta-analysis using Bayesian analysis of randomised trials of prophylactic versus selective surfactant for RDS.
Setting Cochrane Central Register of Controlled Trials, MEDLINE, Embase and Science Citation Index Expanded.
Patients Randomised trials including infants under 32 weeks of gestational age.
Interventions Intratracheal surfactant, irrespective of type or dose.
Main outcome measures Our primary outcome was neonatal mortality, compared between groups treated with selective surfactant therapy at different thresholds of FiO₂. Secondary outcomes included respiratory morbidity and major complications of prematurity.
Results Of 4643 identified references, 14 studies involving 5298 participants were included. We found no statistically significant differences between 30%, 40% and 50% FiO₂ thresholds. A sensitivity analysis of infants treated in the era of high antenatal steroid use and nasal continuous positive airway pressure as initial mode of respiratory support showed no difference in mortality, RDS or intraventricular haemorrhage alone but suggested an increase in the combined outcome of major morbidities in the 60% threshold.
Conclusion Our results do not show a clear benefit of surfactant treatment at any threshold of FiO₂. The 60% threshold was suggestive of increased morbidity. There was no advantage seen with prophylactic treatment. Randomised trials of different thresholds for surfactant delivery are urgently needed to guide clinicians and provide robust evidence.
PROSPERO registration number CRD42020166620.

WHAT IS ALREADY KNOW ON THIS TOPIC
⇒ Intratracheal surfactant, provided to premature infants with neonatal respiratory distress syndrome (RDS), decreases mortality and the respiratory complications of prematurity.
⇒ Current best practice supports nasal continuous positive airway pressure (NCPAP) and avoidance of mechanical ventilation, with provision of exogenous surfactant with increasing oxygen requirement or need for ventilation.
⇒ Due to insufficient available evidence, clinical guidelines and therefore practice on when surfactant should be provided to these infants vary.

WHAT THIS STUDY ADDS
⇒ This study adds to a limited evidence base on when is most appropriate to provide selective surfactant to infants with RDS.
⇒ A threshold of 60% fraction of inspired oxygen has been shown to increase major morbidity, most notably retinopathy of prematurity, and should be avoided.
⇒ No significant difference was seen between the 30%, 40% and 50% thresholds, which suggests more judicious use of surfactant may be appropriate.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY
⇒ The results of this study suggest that more judicious use of selective surfactant may be appropriate in premature infants managed on NCPAP.
⇒ Well designed and adequately powered randomised trials are required to further evaluate the most appropriate threshold of oxygen to provide surfactant to these infants.

INTRODUCTION
Respiratory distress syndrome (RDS) is a common consequence of prematurity. 1 Management is through provision of respiratory support alongside exogenous surfactant. 2 Early Cochrane reviews supported prophylactic surfactant and intubation. 3 A more recent review compared a prophylactic strategy (administration before first breath or after brief stabilisation) to selective use (after evidence of RDS), including subgroup analysis of current best practice (nasal continuous positive airway pressure (NCPAP) and high antenatal steroid use). 4 The risk of chronic lung disease (CLD)/death was lower in the selective group in the subgroup supporting more judicious use.
Best practice dictates stabilisation of preterm infants with NCPAP and early surfactant if the need for intubation arises. However, the threshold at which this should occur is unclear. Despite a large body of work assessing the best use of surfactant, little work has assessed the threshold of fraction of inspired oxygen (FiO₂) that surfactant should be given at, leading to variations in practice and reliance on poor quality evidence. 5, 6 Differing views exist internationally. The European Consensus Guidelines suggest a 30%
threshold.\(^2\) Both the American Academy of Paediatrics and the National Institute for Health and Care Excellence (UK) state surfactants should be selectively given to infants on NCPAP but do not include a FiO\(_2\) threshold.\(^7\)\(^8\) More recently, the Canadian Paediatric Society suggested 50%.\(^9\) The value of FiO\(_2\) in isolation as a measure of RDS severity and surfactant requirement has been disputed, as FiO\(_2\) is influenced by multiple factors and pathologies.

Our aim was to perform a systematic review and network meta-analysis comparing different thresholds of FiO\(_2\) for surfactant treatment in infants under 32 weeks of gestation.

METHODS

A systematic review and network meta-analysis was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards and was registered with the International Prospective Register of Systematic Reviews (PROSPERO) before commencement (CRD42020166620).

Network meta-analysis allows indirect comparison of data across studies. In the absence of direct evidence comparing thresholds of FiO\(_2\), it allows indirect comparison of intervention arms of trials which compare prophylaxis (control) and selective (intervention) treatment. As selective surfactant was provided at different thresholds of FiO\(_2\) in these trials, we can compare thresholds.

Criteria for considering studies

Studies

Randomised controlled trials (RCTs) were considered, irrespective of language, publication status or publication date.

Participants

The participants included neonates from RCTs born before 32 weeks of postmenstrual age.

Interventions

Intratracheal surfactant delivery.

Outcomes

The primary outcome was mortality. Secondary outcomes included

- Bronchopulmonary dysplasia (BPD) (oxygen requirement or need for respiratory support at 36 weeks of corrected gestational age (CGA))\(^10\)
- CLD (oxygen requirement or need for respiratory support at 28 days).\(^10\)
- Pneumothorax (or other air leak).
- Surfactant therapy (proportion requiring surfactant and number of doses required)
- Major morbidity, defined as at least one of severe intraventricular haemorrhage (IVH) (grade 3 or 4),\(^11\) periventricular leucomalacia (PVL),\(^12\) necrotising enterocolitis (NEC) (stage 2A or above),\(^13\) retinopathy of prematurity (ROP) greater than stage 2\(^14\) or BPD.
- Neurodevelopmental outcome at 2 years of CGA, defined as one of cerebral palsy, mental retardation (Bayley Scales of Infant Development Mental Developmental Index <70), legal blindness (<20/200 visual acuity) and hearing deficit (aided or <60 dB on audiometric testing).
- Health-related quality of life (HRQOL).\(^15\)

Search methods

Regarding electronic searches, we searched Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (PubMed), Embase and Science Citation Index Expanded between inception and December 2021 without language restrictions.

We also searched The US National Institute of Health Ongoing Trials Register (www.clinicaltrials.gov) and WHO International Clinical Trials Registry Platform (apps.who.int/trialsearch/).

A combination of controlled vocabulary and free-text terms was used for the population (preterm infants) and intervention (surfactant) (see online supplemental eMethods).

Data collection and management

Two authors independently screened titles and abstracts to identify potential trials and contact trial authors in the case of missing information. Differences were resolved by discussion.

Measurement of treatment effects

For dichotomous variables the OR with 95% credible intervals (CrI) were calculated.\(^17\) For continuous variables, we calculated the mean difference with 95% CrI. For count outcomes, we calculated the rate ratio with 95% CrI. For time-to-event outcomes, HR with 95% CrI was calculated.

We estimated the ranking probabilities for all interventions (level of FiO\(_2\)) of being at each possible rank for each intervention. We obtained the surface under the cumulative ranking curve (cumulative probability), rankogram and relative ranking with CrI for the ranking probabilities.\(^18\)\(^19\)
Table 1 Characteristics of included studies

<table>
<thead>
<tr>
<th>Study name</th>
<th>Setting</th>
<th>Participants analysed</th>
<th>Primary outcome</th>
<th>Gestational age range (weeks)</th>
<th>Female gender (%)</th>
<th>Antenatal steroids (any) (%)</th>
<th>Surfactant type</th>
<th>Surfactant dose</th>
<th>Ventilation</th>
<th>Dropouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kattwinkel et al<sup>29</sup></td>
<td>8 centres, USA</td>
<td>1248</td>
<td>Moderate RDS<sup>*</sup></td>
<td>29–33</td>
<td>47</td>
<td>No info</td>
<td>Bovine Infasurf</td>
<td>150 mg/dose</td>
<td>Both</td>
<td>150</td>
</tr>
<tr>
<td>Rojas et al<sup>30</sup></td>
<td>8 centres, Columbia</td>
<td>279</td>
<td>Need for MV</td>
<td>27–32</td>
<td>49</td>
<td>86</td>
<td>Bovine Survanta</td>
<td>100 mg/kg</td>
<td>CPAP</td>
<td>0</td>
</tr>
<tr>
<td>Walti et al<sup>31</sup></td>
<td>12 centres, France</td>
<td>256</td>
<td>Survival without BPD at 28 days</td>
<td>25–31</td>
<td>46</td>
<td>15</td>
<td>Porcine Curosurf</td>
<td>200 mg/kg</td>
<td>Intubation</td>
<td>32</td>
</tr>
<tr>
<td>Bevilacqua et al<sup>33</sup></td>
<td>2 centres: Italy and Bulgaria</td>
<td>93</td>
<td>Mortality Grade 3, 4 IVH</td>
<td>26–30</td>
<td>54</td>
<td>29</td>
<td>Porcine Curosurf</td>
<td>200 mg/kg</td>
<td>Both</td>
<td>0</td>
</tr>
<tr>
<td>Dilmen et al<sup>34</sup></td>
<td>6 centres, Turkey</td>
<td>159</td>
<td>Necessity for MV</td>
<td>25–30</td>
<td>55</td>
<td>65</td>
<td>Porcine Curosurf</td>
<td>200 mg/kg</td>
<td>CPAP</td>
<td>0</td>
</tr>
<tr>
<td>Kendig et al<sup>35</sup></td>
<td>3 centres, USA</td>
<td>479</td>
<td>Survival to discharge <30</td>
<td>45</td>
<td>31</td>
<td>Bovine Self-prepared</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lefort et al<sup>36</sup></td>
<td>1 centre, Brazil</td>
<td>75</td>
<td>Ventilatory parameters <34</td>
<td>45</td>
<td>No info</td>
<td>Porcine Curosurf</td>
<td>100 mg/kg</td>
<td>Both</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sandii et al<sup>37</sup></td>
<td>Multicentre, Europe</td>
<td>208</td>
<td>MV in first 5 days</td>
<td>25–29</td>
<td>47</td>
<td>97</td>
<td>Porcine Curosurf</td>
<td>200 mg/kg</td>
<td>CPAP</td>
<td>0</td>
</tr>
<tr>
<td>Finer et al<sup>38</sup></td>
<td>Multicentre, USA</td>
<td>1316</td>
<td>Death/BPD at 36 weeks CGA</td>
<td>24–28</td>
<td>46</td>
<td>96</td>
<td>Individual unit protocol</td>
<td>CPAP</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Kandraju et al<sup>39</sup></td>
<td>1 centre, India</td>
<td>153</td>
<td>Need for MV in first week of life</td>
<td>28–34</td>
<td>49</td>
<td>94</td>
<td>Porcine (Curosurf) or bovine (Survanta)</td>
<td>100 mg/kg</td>
<td>CPAP</td>
<td>0</td>
</tr>
<tr>
<td>Merritt et al<sup>40</sup></td>
<td>3 centres, USA and Finland</td>
<td>148</td>
<td>Mortality BPD 26–29</td>
<td>43</td>
<td>4</td>
<td>Human Self-prepared</td>
<td>70 mg/kg</td>
<td>Intubation</td>
<td>98†</td>
<td></td>
</tr>
<tr>
<td>de Winter et al<sup>41</sup></td>
<td>2 centres, Holland</td>
<td>81</td>
<td>TcPO<sub>2</sub> and FiO<sub>2</sub> at 6 hrs</td>
<td>26–30</td>
<td>48</td>
<td>44</td>
<td>Porcine Curosurf</td>
<td>200 mg/kg</td>
<td>Intubation</td>
<td>0</td>
</tr>
<tr>
<td>Dunn et al<sup>42</sup></td>
<td>27 centres: USA and Canada</td>
<td>656</td>
<td>Death/BPD at 36 weeks CGA</td>
<td>26–30</td>
<td>49</td>
<td>99</td>
<td>Individual unit protocol</td>
<td>Unit protocol</td>
<td>Both</td>
<td>8</td>
</tr>
<tr>
<td>Egberts et al<sup>43</sup></td>
<td>4 centres: Sweden and Holland</td>
<td>147</td>
<td>TcPO<sub>2</sub> and FiO<sub>2</sub> at 6 hours</td>
<td>26–30</td>
<td>60</td>
<td>29</td>
<td>Porcine Curosurf</td>
<td>200 mg/kg</td>
<td>Intubated</td>
<td>2</td>
</tr>
</tbody>
</table>

[*]Moderate RDS defined as mean airway pressure ≥8 cmH₂O or FiO₂ ≥40%.
Including 52 patients in placebo group not included in this analysis.
BPD, bronchopulmonary dysplasia; CGA, corrected gestational age; CPAP, continuous positive airway pressure; FiO₂, fraction of inspired oxygen; IVH, Intraventricular haemorrhage; MV, mechanical ventilation; RDS, respiratory distress syndrome; TcPO₂, transcutaneous oxygen tension.
analysis was the participant, according to the intervention group to which the participant was randomly assigned.

Data synthesis

A network meta-analysis was conducted to compare thresholds of FiO₂ simultaneously for each outcome. Our analysis was based on guidance by the National Institute for Clinical Excellence Decision Support Unit.²⁹–³¹

We obtained a network plot to ensure that the trials were connected by interventions.¹⁹ We conducted a Bayesian network meta-analysis using the Markov chain Monte Carlo method (for further details, see online supplemental eMethods). We

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Summary of findings table for the primary outcome mortality at maximal follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>30% Threshold</td>
</tr>
<tr>
<td>Studies:</td>
<td>14</td>
</tr>
<tr>
<td>Participants:</td>
<td>5290</td>
</tr>
<tr>
<td>Prophylaxis:</td>
<td>123 per 1000 (12.3%)</td>
</tr>
<tr>
<td>OR 1.81</td>
<td>(1.00 to 3.44) Network estimate</td>
</tr>
<tr>
<td>79 more per 1000 (0 fewer to 202 more)</td>
<td></td>
</tr>
<tr>
<td>OR 1.52</td>
<td>(0.94 to 2.40) Network estimate</td>
</tr>
<tr>
<td>53 more per 1000 (7 fewer to 128 more)</td>
<td></td>
</tr>
<tr>
<td>OR 0.82</td>
<td>(0.50 to 1.41) Network estimate</td>
</tr>
<tr>
<td>20 fewer per 1000 (57 fewer to 42 more)</td>
<td></td>
</tr>
<tr>
<td>OR 1.16</td>
<td>(0.63 to 2.29) Network estimate</td>
</tr>
<tr>
<td>17 more per 1000 (41 fewer to 120 more)</td>
<td></td>
</tr>
<tr>
<td>Quality of evidence:</td>
<td>Based on 1783 participants (3 RCTs)</td>
</tr>
<tr>
<td>*The trials all had some concerns or were at high risk of bias.</td>
<td></td>
</tr>
<tr>
<td>‡This is a surrogate outcome or was an indirect comparison.</td>
<td></td>
</tr>
<tr>
<td>†There was significant heterogeneity.</td>
<td></td>
</tr>
<tr>
<td>§Less than 300 events in combined groups.</td>
<td></td>
</tr>
<tr>
<td>†There is evidence of publication bias.</td>
<td></td>
</tr>
<tr>
<td>RCT, randomised controlled trial.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Summary of findings table for secondary outcomes: respiratory outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold</td>
<td>30%</td>
</tr>
<tr>
<td>Bronchopulmonary dysplasia</td>
<td>113 per 1000 (11.3%)</td>
</tr>
<tr>
<td>OR 1.39</td>
<td>(0.87 to 2.24) Network estimate</td>
</tr>
<tr>
<td>38 more per 1000 (13 fewer to 109 more)</td>
<td></td>
</tr>
<tr>
<td>OR 0.77</td>
<td>(0.37 to 1.58) Network estimate</td>
</tr>
<tr>
<td>24 fewer per 1000 (68 fewer to 55 more)</td>
<td></td>
</tr>
<tr>
<td>OR 0.93</td>
<td>(0.74 to 1.16) Network estimate</td>
</tr>
<tr>
<td>7 fewer per 1000 (27 fewer to 16 more)</td>
<td></td>
</tr>
<tr>
<td>OR 1.02</td>
<td>(0.72 to 1.45) Network estimate</td>
</tr>
<tr>
<td>2 more per 1000 (30 fewer to 43 more)</td>
<td></td>
</tr>
<tr>
<td>Quality of evidence:</td>
<td>Based on 279 participants (1 RCT)</td>
</tr>
<tr>
<td>*The trials all had some concerns or were at high risk of bias.</td>
<td></td>
</tr>
<tr>
<td>‡This is a surrogate outcome or was an indirect comparison.</td>
<td></td>
</tr>
<tr>
<td>†There was significant heterogeneity.</td>
<td></td>
</tr>
<tr>
<td>§Less than 300 events in combined groups.</td>
<td></td>
</tr>
<tr>
<td>Chronic lung disease</td>
<td>284 per 1000 (28.4%)</td>
</tr>
<tr>
<td>OR 1.48</td>
<td>(0.82 to 2.63) Network estimate</td>
</tr>
<tr>
<td>86 more per 1000 (40 fewer to 227 more)</td>
<td></td>
</tr>
<tr>
<td>OR 1.05</td>
<td>(0.63 to 1.64) Network estimate</td>
</tr>
<tr>
<td>10 more per 1000 (84 fewer to 110 more)</td>
<td></td>
</tr>
<tr>
<td>OR 4.08</td>
<td>(0.77 to 35.45) Network estimate</td>
</tr>
<tr>
<td>334 more per 1000 (50 fewer to 650 more)</td>
<td></td>
</tr>
<tr>
<td>OR 0.59</td>
<td>(0.28 to 1.22) Network estimate</td>
</tr>
<tr>
<td>94 fewer per 1000 (185 fewer to 42 more)</td>
<td></td>
</tr>
<tr>
<td>Quality of evidence:</td>
<td>Based on 1504 participants (2 RCTs)</td>
</tr>
<tr>
<td>*The trials all had some concerns or were at high risk of bias.</td>
<td></td>
</tr>
<tr>
<td>‡This is a surrogate outcome or was an indirect comparison.</td>
<td></td>
</tr>
<tr>
<td>†There was significant heterogeneity.</td>
<td></td>
</tr>
<tr>
<td>§Less than 300 events in combined groups.</td>
<td></td>
</tr>
<tr>
<td>BPD or CLD</td>
<td>171 per 1000 (17.1%)</td>
</tr>
<tr>
<td>OR 1.45</td>
<td>(0.95 to 2.21) Network estimate</td>
</tr>
<tr>
<td>59 more per 1000 (7 fewer to 142 more)</td>
<td></td>
</tr>
<tr>
<td>OR 0.91</td>
<td>(0.54 to 1.41) Network estimate</td>
</tr>
<tr>
<td>13 fewer per 1000 (71 fewer to 54 more)</td>
<td></td>
</tr>
<tr>
<td>OR 0.96</td>
<td>(0.59 to 2.00) Network estimate</td>
</tr>
<tr>
<td>6 fewer per 1000 (63 fewer to 121 more)</td>
<td></td>
</tr>
<tr>
<td>OR 0.86</td>
<td>(0.47 to 1.34) Network estimate</td>
</tr>
<tr>
<td>21 fewer per 1000 (83 fewer to 45 more)</td>
<td></td>
</tr>
<tr>
<td>Quality of evidence:</td>
<td>Based on 1783 participants (3 RCTs)</td>
</tr>
<tr>
<td>*The trials all had some concerns or were at high risk of bias.</td>
<td></td>
</tr>
<tr>
<td>‡This is a surrogate outcome or was an indirect comparison.</td>
<td></td>
</tr>
<tr>
<td>†There was significant heterogeneity.</td>
<td></td>
</tr>
<tr>
<td>§Less than 300 events in combined groups.</td>
<td></td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>33 per 1000 (3.3%)</td>
</tr>
<tr>
<td>OR 2.41</td>
<td>(0.61 to 10.48) Network estimate</td>
</tr>
<tr>
<td>43 more per 1000 (13 fewer to 232 more)</td>
<td></td>
</tr>
<tr>
<td>OR 1.26</td>
<td>(0.42 to 3.97) Network estimate</td>
</tr>
<tr>
<td>8 more per 1000 (19 fewer to 87 more)</td>
<td></td>
</tr>
<tr>
<td>OR 0.81</td>
<td>(0.19 to 3.47) Network estimate</td>
</tr>
<tr>
<td>6 fewer per 1000 (27 fewer to 74 more)</td>
<td></td>
</tr>
<tr>
<td>OR 2.05</td>
<td>(0.50 to 10.72) Network estimate</td>
</tr>
<tr>
<td>33 more per 1000 (16 fewer to 237 more)</td>
<td></td>
</tr>
<tr>
<td>Quality of evidence:</td>
<td>Based on 1783 participants (3 RCTs)</td>
</tr>
<tr>
<td>*The trials all had some concerns or were at high risk of bias.</td>
<td></td>
</tr>
<tr>
<td>‡This is a surrogate outcome or was an indirect comparison.</td>
<td></td>
</tr>
<tr>
<td>†There was significant heterogeneity.</td>
<td></td>
</tr>
<tr>
<td>§Less than 300 events in combined groups.</td>
<td></td>
</tr>
<tr>
<td>RCT, randomised controlled trial.</td>
<td></td>
</tr>
</tbody>
</table>
used fixed-effect and random-effect models, reporting the more conservative. We estimated the probability that each intervention ranks at one of the possible positions.

Analysis was carried out using OpenBUGS V.3.2.3 (OpenBUGS Project Management Group, UK).

We assessed inconsistency (statistical evidence of the violation of transitivity assumption) by fitting both an inconsistency model and a consistency model. In the presence of inconsistency, we assessed whether the inconsistency was due to clinical or methodological heterogeneity. We performed direct comparisons using the same technical details.

Subgroup/sensitivity analysis was planned based on (1) trials at low risk of bias compared with trials at high risk of bias, (2) gestational age and (3) current best practice—use of antenatal steroids and NCPAP.

RESULTS

A total of 4643 references were identified. Of 138 full-text articles reviewed, 112 were excluded (see online supplemental eResults). Twenty-six references describing 14 trials were included (PRISMA diagram, figure 1).

The included studies22–33 involved 5588 infants, 5298 after postrandomisation dropouts. Threshold of FiO₂ for provision of selective surfactant ranged from 30% (three studies) to 60% (three studies). Five studies provided surfactants at 40% and three studies provided surfactants at 50%. Mean gestational age ranged from 27 weeks to 30 weeks. The range of gestational ages included in trials was variable as shown in table 1. There does not appear to be a systematic difference in the range of gestational ages among the trials using different FiO₂ thresholds for selective surfactant provision. Regarding the prophylactic group, in seven studies, surfactant was given straight after birth; in five studies, surfactant was given within 15 min; and in three studies, surfactant was given within 1 hour. The percentage of participants with antenatal steroid exposure ranged from 4% to 99%. Eight studies used Poractant alfa (Curosurf, Chiesi Farmaceutici, Italy). One study used Alactant alfa or Beractant (Survanta, AbbVie, USA). Of the five remaining studies, two multicentre trials allowed surfactant as per individual unit protocol, one Calfactant (Infasurf, ONY Biotech, USA) and one a self-prepared bovine surfactant. One study used a self-prepared human surfactant (see table 1 for further details). Twelve publications were identified as follow-up of the cohort in included trials.36–47 Due to the nature of the intervention studied, star-shaped networks were formed for each outcome. No closed loops were present, and each study was connected to the network for each outcome. No studies were found to be at low risk of bias, 12 had some concerns; and 2 had high risk of bias (online supplemental eTable 1). As shown in online supplemental eTable 1, there does not appear to be a systematic difference in the risk of bias among the trials using different FiO₂ thresholds.

Primary outcome

Each of the 14 studies measured mortality, including 5298 patients. A random-effect model was used. OR for each comparison, Deviance Information Criterion (DIC), median between-study SD and variance are summarised in online supplemental eTable 2. None of the estimates reached statistical significance with 30% threshold having the highest OR for this outcome (1.81) with 95% CrI of 1.0 to 3.44 (table 2). Sensitivity analysis of current best practice (NCPAP use with high rates of antenatal steroid) did not show any statistically significant difference (online supplemental eTables 3 and 4).

Secondary outcomes

ORs, DIC and variance for each comparison can be found in online supplemental eTable 5. A summary of results is provided (tables 3–5).

Respiratory outcomes

BPD, CLD and CLD/BPD at maximum follow-up were assessed. There was no difference regarding BPD or CLD alone. When evaluated at maximum follow-up, incidence was higher in the 30% group than prophylaxis when directly compared. The other outcomes showed lower point estimates, although not reaching statistical significance.

Use of surfactant

Unsurprisingly, the proportion of infants receiving surfactant was significantly higher in the prophylactic group (online supplemental eTable 5e).

Regarding the number of surfactant doses, there was a significant difference between thresholds. The 60% threshold had the least use of surfactant, 815 fewer doses per 1000. The 30% threshold ranked second at 546 fewer doses per 1000; the 50% threshold ranked third at 384 fewer doses per 1000; and the 40% threshold ranked last at 316 fewer doses per 1000.

Complications of prematurity

We showed no significant differences in incidence of IVH, PVL, NEC or BPD. The 60% threshold showed a higher

Table 4 Summary of findings table for secondary outcomes: number of surfactant doses required

<table>
<thead>
<tr>
<th>Surfactant: doses (n)</th>
<th>Threshold 60%</th>
<th>Threshold 30%</th>
<th>Threshold 50%</th>
<th>Threshold 40%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis: 1107 per 1000 (110.7 per 100 participants)</td>
<td>RaR 0.26 (0.21 to 0.32)</td>
<td>Network estimate</td>
<td>815 fewer per 1000 (870 fewer to 750 fewer)</td>
<td>RaR 0.51 (0.46 to 0.56)</td>
</tr>
<tr>
<td>Rank: 5 (5–5)</td>
<td>Rank: 1 (1–1)</td>
<td>Based on 334 participants (3 RCTs)</td>
<td>Based on 881 participants (3 RCTs)</td>
<td>Based on 742 participants (2 RCTs)</td>
</tr>
<tr>
<td>Quality of evidence: ◇○○ Low *</td>
<td>Based on 334 participants (3 RCTs)</td>
<td>Based on 881 participants (3 RCTs)</td>
<td>Based on 742 participants (2 RCTs)</td>
<td>Based on 511 participants (5 RCTs)</td>
</tr>
</tbody>
</table>

All results are reported as OR with 95% credible intervals.

*The trials were all had some concerns or were at high risk of bias.

†There was significant heterogeneity.
incidence of ROP on direct comparison with prophylaxis (OR 2.35, 95% CrI 1.02 to 5.42). Due to the presentation of components of this outcome separately in included studies, we were unable to perform the comparison-adjusted funnel plot to assess reporting bias. Due to paucity of data, we were unable to quantify the effect on Health-related quality of life. No study assessed HRQOL.

Quality of evidence
The overall quality of the evidence was low or very low for all comparisons due to the high risk of bias, heterogeneity, indirectness, imprecision and publication bias.

Heterogeneity
Since there was no meaningful way in which to rank these studies, we were unable to perform the comparison-adjusted funnel plot to assess reporting bias. Due to paucity of data, we were unable to quantify the effect.

Neurodevelopment at CGA of 2 years
One trial\(^7\) reported this outcome. Forty-three of 479 in the prophylactic group and 55 of 511 in the selective group developed one or more component.

Table 5 Summary of findings table for secondary outcome: major morbidities

<table>
<thead>
<tr>
<th>Morbidity</th>
<th>Total major morbidities (n)</th>
<th>Participants (n)</th>
<th>Studies (n)</th>
<th>Prophylaxis: OR (95% CrI)</th>
<th>Quality of evidence</th>
<th>Grade 3/4 Intraventricular haemorrhage</th>
<th>Prophylaxis: OR (95% CrI)</th>
<th>Quality of evidence</th>
<th>Periventricular leukomalacia</th>
<th>Prophylaxis: OR (95% CrI)</th>
<th>Quality of evidence</th>
<th>Retinopathy of prematurity</th>
<th>Prophylaxis: OR (95% CrI)</th>
<th>Quality of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPD</td>
<td>5134</td>
<td>113 per 1000</td>
<td>2</td>
<td>OR 1.29 (0.87 to 2.24)</td>
<td>Very low*†§</td>
<td>Low *†⊕⊕</td>
<td>OR 1.02 (0.81 to 1.28)</td>
<td>Very low*†§</td>
<td>Very low*†§</td>
<td>OR 1.02 (0.81 to 1.28)</td>
<td>Very low*†§</td>
<td>Low *†⊕⊕</td>
<td>OR 1.02 (0.81 to 1.28)</td>
<td>Very low*†§</td>
</tr>
<tr>
<td>Grade 2</td>
<td>5134</td>
<td>66 per 1000</td>
<td>2</td>
<td>OR 1.01 (0.01 to 96.83)</td>
<td>Very low*†§</td>
<td>Low *†⊕⊕</td>
<td>OR 1.01 (0.01 to 96.83)</td>
<td>Very low*†§</td>
<td>Very low*†§</td>
<td>OR 1.01 (0.01 to 96.83)</td>
<td>Very low*†§</td>
<td>Low *†⊕⊕</td>
<td>OR 1.01 (0.01 to 96.83)</td>
<td>Very low*†§</td>
</tr>
</tbody>
</table>
to perform planned subgroup analyses based on gestation, type of ventilation or antenatal steroid use alone. To explore heterogeneity, a sensitivity analysis was carried out comparing studies using current best practice (over 60% antenatal steroid use and NCPAP for stabilisation).

NCPAP and high antenatal steroid use

A summary of findings is shown in Table 6. Six studies24 25 27 28 33 34 met the criteria, including 2,554 infants. There was no statistically significant difference seen in mortality, BPD, pneumothorax or grade 3/4 IVH. There was an increased rate of major morbidity in the 60% threshold group—310 more per 1000 (95% CrI 27 fewer to 957 more). ORs, DIC and variance for the 60% threshold group—310 more per 1000 (95% CrI 27 fewer to 927 more)—are provided in online supplemental eTables 5 and 6. Each comparison had a very low quality of evidence.

DISCUSSION

Our primary outcome, mortality, showed no statistically significant differences between the thresholds of FiO2 examined. Regarding the major morbidities of preterm birth, the 60% threshold showed a higher incidence of ROP on direct comparison with prophylaxis. Regarding surfactant doses received, there was significant differences between thresholds. The 60% threshold had the least doses, 30% threshold second, 50% threshold third and 40% threshold last. This may suggest that earlier selective treatment decreases the need for repeat doses, and that earlier use of surfactant may be appropriate as infants reaching this threshold will need more surfactant if treatment is delayed. However, this would be contradicted by the 60% threshold requiring least doses. Interpretation is complicated by differences in rescue dosing, dosing strategies between studies and total amount of doses allowed. The 30% threshold, despite having less doses of surfactant, had a higher incidence of prolonged respiratory support. This may relate to exposure to harmful effects of ventilation earlier, when the neonatal lung is more vulnerable.

A sensitivity analysis of infants treated with the current standard of care showed an increase in major morbidity in the 60% threshold group. While our analysis failed to identify an optimal threshold, it adds to scarce data. In the absence of evidence showing a benefit to treatment at 30%, 40% or 50% FiO2, it warrants consideration of higher thresholds (except 60%)—decreasing invasive procedures, associated mechanical ventilation, surfactant use, sedation and associated side effects. The economic impact is likely to be significant.

Despite the common nature of this issue, there are little data to guide clinicians. A secondary analysis of prospectively collected data has been used to support lower thresholds. This study reviewed infants between 25 weeks and 32 weeks of gestation initially managed on NCPAP. Multivariate analysis showed
NCPAP failure was predicted by the highest FiO₂ in the first hours. This study was limited by several factors: its retrospective nature, the small numbers at each gestation and the low number primarily managed with NCPAP (50%). The authors concluded that NCPAP failure was predicted by an FiO₂ greater than 30% in the first hours and was associated with adverse outcomes. A review of the literature by Dani² also evaluated this issue, concluding that the most effective threshold is unknown.

The European Consensus Guidelines on the management of RDS,² based on the above paper by Dargaville et al., suggests ‘early’ use of rescue surfactant outside of the delivery room at an FiO₂ of 30% or above. However, the guideline also recommends using 30%–40% FiO₂ for initial stabilisation despite advising against prophylactic surfactant.

Despite the common use of FiO₂ as a major criterion for provision of selective surfactant, there are limitations to its use, especially in isolation. A combination of pH, clinical assessment and FiO₂ will give a more accurate assessment. FiO₂ can be influenced by many factors including NCPAP interface, mode of non-invasive ventilation and level of positive end expiratory pressure and can be a measure of pathologies other than surfactant deficiency.

The strength of this review was the range of databases searched without restrictions. Two independent reviewers carried out article identification and data extraction. Analysis was performed using fixed-effect and random-effect models, with the most conservative reported. There were limitations. A scoping search revealed no studies directly comparing thresholds for provision of surfactant, and therefore, we relied on indirect comparisons. A paucity of data decreased confidence in results and precluded planned analyses.

There was a lack of long-term neurodevelopmental follow-up and assessment of quality of life. As survival rates of prematurity increase, long-term effects become increasingly important. Parental perspective is vital in this regard.

CONCLUSION

This network meta-analysis of 14 studies and 5290 infants suggests no statistically significant difference between a range of 30% to 50% FiO₂ for the provision of surfactant to preterm infants regarding mortality, respiratory outcomes or complications of prematurity. A 60% threshold may result in more major morbidities. Despite the low quality of evidence and limitations of indirect comparisons, this review provides the strongest evidence currently available, supporting more judicious use of surfactant in preterm infants.

Contributors JM contributed to the conception and design of the study idea and methodology, performed study selection and reviewed the manuscript. AB contributed to the conception and design of the study idea and methodology, performed study selection, data extraction and risk of bias assessment, contributed to the interpretation of the data and drafted the manuscript. KG contributed to the conception and design of the study idea and methodology and the interpretation of the data. YF performed data extraction and risk of bias assessment and contributed to the interpretation of the data. All authors critically revised the manuscript, agreed to be fully accountable for ensuring the integrity and accuracy of the work, and read and approved the final manuscript. JM is responsible for the overall content as the guarantor.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. Data is available on reasonable request to the authors.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. The content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs Aoife Branagan http://orcid.org/0000-0001-5220-5372
Jan Milethin http://orcid.org/0000-0003-0489-6054

REFERENCES

Online Only Material

1) eMethods - Search Strategy
2) eMethods - Data extraction and Management
3) eMethods - Data Synthesis
4) eResults - Risk of Bias Assessment
eTable 1 – Risk of Bias Assessment
5) eResults - Excluded Studies.
6) eResults - Primary Outcome Mortality
eTable 2 – Odds ratio for both the direct and network comparison of the primary outcome
7) eResults - Secondary Outcomes
eTable 3 - Odds ratio for both the direct and network comparison for secondary outcomes
8) eResults - Sensitivity Analysis of Current Best Practice
eTable 4 - Odds Ratio for Sensitivity Analysis
eTable 5 - Models used for outcomes for sensitivity analysis
eMethods – Search Strategy

1) The Central Register of Controlled Trials (CENTRAL) in the Cochrane Library
 Searched from inception to March 2020
 Search strategy:

 #1 MeSH descriptor: [Infant, Very Low Birth Weight] explode all trees
 #2 MeSH descriptor: [Infant, Newborn] explode all trees
 #3 MeSH descriptor: [Infant, Extremely Low Birth Weight] explode all trees
 #4 MeSH descriptor: [Infant, Low Birth Weight] explode all trees
 #5 MeSH descriptor: [Infant, Premature] explode all trees
 #6 MeSH descriptor: [Infant, Extremely Premature] explode all trees
 #7 MeSH descriptor: [Premature Birth] explode all trees
 #8 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7
 #9 Birth, Premature OR Births, Premature OR Premature Births OR Preterm Birth OR Birth,
 Preterm OR Births, Preterm OR Preterm Births OR Infants, Premature OR Premature Infant
 OR Preterm Infants OR Infant, Preterm OR Preterm Infant OR Premature Infants OR Neonatal OR Prematurity OR Prematurity, Neonatal OR Extremely Premature
 Infant OR Infants, Extremely Premature OR Premature Infant, Extremely OR Premature
 Infants, Extremely OR Extremely Preterm Infants OR Extremely Preterm Infant OR Infant,
 Extremely Preterm OR Infants, Extremely Preterm OR Preterm Infant, Extremely OR Preterm
 Infants, Extremely OR Extremely Premature Infants OR Extremely Low Birth Weight OR
 Extremely Low Birth Weight Infant OR (Extremely AND low AND birth AND weight) OR
 Very Low Birth Weight OR (Very AND low AND birth AND weight) OR Very Low Birth
 Weight Infant OR Low Birth Weight Infant OR Low Birth Weight OR Birth, Low Birth
 OR Births, Low OR Low Birth Weight Infant, Newborn OR Newborn Infant OR
 Newborn Infants OR Newborns OR Newborn OR Neonate OR Neonates OR Infants,
 Premature OR Premature Infant OR Preterm Infants OR Infant, Preterm OR Infants, Preterm
 OR Preterm Infant OR Premature Infants OR Neonatal Prematurity OR Prematurity, Neonatal
 OR ELBW OR VLBW OR Extreme prematurity
 #10 #8 OR #9
 #11 MeSH descriptor: [Surface-Active Agents] explode all trees
 #12 MeSH descriptor: [Pulmonary Surfactants] explode all trees
 #13 Agents, Surface-Active OR Surface Active Agents OR Active Agents, Surface OR Agents,
 Surface Active OR Tensides OR Surfactants OR Surfactant OR Amphiphilic Agents OR
 Agents, Amphiphilic OR Surfactants, Pulmonary OR Pulmonary Surfactant OR Surfactant,
 Pulmonary
 #14 #11 OR #12 OR #13
 #15 #8 AND #14

2) MEDLINE (PubMed)
 Searched from inception to March 2020
 Search strategy:

 a) Population – neonates
 "Infant, Newborn"[Mesh]
 "Infant, Extremely Low Birth Weight"[Mesh]
 "Infant, Low Birth Weight"[Mesh]
 "Infant, Very Low Birth Weight"[Mesh]
 "Infant, Premature"[Mesh]
 "Extremely Premature"[Mesh]
 "Premature Birth"[Mesh]

 Entry terms:
 Birth, Premature
 Births, Premature
b) **Intervention – Surfactant**

34 "Surface-Active Agents"[Mesh]
35 "Pulmonary Surfactants"[Mesh]

Entry terms
36 Agents, Surface-Active [all fields] OR
37 Surface Active Agents [all fields] OR
38 Active Agents, Surface [all fields] OR
39 Agents, Surface Active [all fields] OR
40 Tensides [all fields] OR
41 Surfactants [all fields] OR
42 Surfactant [all fields] OR
43 Amphiphilic Agents [all fields] OR
44 Agents, Amphiphilic [all fields] OR
45 Surfactants, Pulmonary [all fields] OR
46 Pulmonary Surfactant [all fields] OR
47 Surfactant, Pulmonary [all fields]

The population and intervention search strategies above were combined with boolean operator ‘AND’. The PubMed controlled clinical trials filter was applied.

3) **EMBASE**

Searched from inception to March 2020

Search strategy:

1. infant newborn.mp. or exp newborn/
2. extremely low birth weight.mp. or exp very low birth weight/ or exp extremely low birth weight/ or exp prematurity/
3. extremely-low-birth-weight.mp.
4. (extremely and low and birth and weight).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word]
5. very low birth weight.mp. or exp very low birth weight/
6. very-low-birth-weight.mp.
7. (very and low and birth and weight).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word]
8. newborn infant.mp.
9. neonate.mp.
10. premature.mp.
11. exp premature labor/ or preterm.mp. or exp gestational age/
12. elbw.mp.
13. vlbw.mp.
14. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13
15. exp surfactant associated protein/ or exp surfactant/ or surfactant.mp.
16. pulmonary surfactant.mp. or exp lung surfactant/
17. surface active agents.mp. or surfactant/
18. surfactant/ or tensides.mp.
19. surfactants.mp. or surfactant/
20. 15 or 16 or 17 or 18 or 19
21. (random* or factorial* or crossover* or cross over* or cross-over* or placebo* or doubl* blind* or singl* blind* or assign* or allocat* or volunteer*).af.
22. exp crossover-procedure/ or exp double-blind procedure/ or exp randomized controlled trial/ or exp single-blind procedure/
23. 21 or 22
24. 14 and 20 and 23
4) **Science Citation Index Expanded (Web of Science)**
Searched from inception to March 2020
Search strategy:

TI = (Surface-Active Agents OR Pulmonary Surfactants OR Agents, Surface-Active OR Active Agents, Surface OR Agents, Surface Active OR Surfactants OR Surfactant OR Surfactants, Pulmonary OR Pulmonary Surfactant OR Surfactant, Pulmonary)

TI = (Infant, Extremely Low Birth Weight OR Infant, Low Birth Weight OR Infant, Very Low Birth Weight OR Infant, Premature OR Extremely Premature)

TI = (Infants, Premature OR Premature Infant OR Preterm Infants OR Infant, Preterm OR Preterm Infant OR Premature Infants OR Neonatal Prematurity OR Prematurity, Neonatal OR Extremely Premature Infant OR Infants, Extremely Premature OR Premature Infant, Extremely OR Premature Infants, Extremely OR Extremely Preterm Infants)

TI = (Extremely Preterm Infant OR Extremely Premature Infants OR Extremely-Low-Birth-Weight OR Extremely Low Birth Weight [all fields] OR(Extremely AND low AND birth AND weight) OR Very Low Birth Weight OR Very Low-Birth-Weight OR Neonate OR Neonates OR ELBW OR VLBW OR extreme prematurity)

TS=(random* OR rct* OR crossover OR masked OR blind* OR placebo* OR meta-analysis OR systematic review* OR meta-analys*)

5) **ClinicalTrials.gov**
Searched from inception to March 2020
Condition: prematurity
Intervention: Surfactant

6) **World Health Organization International Clinical Trials Registry Platform**
(www.who.int/trialssearch/)
Searched from inception to March 2020
Condition: neo*
Intervention: surfactant
eMethod – Data extraction and Management
Two authors independently extracted the data below in a pre-piloted data extraction form:

• Outcome data (for each outcome and each intervention group):
 - Number of participants randomised
 - Number of participants included for the analysis
 - Number of participants with events for binary outcomes, mean and standard deviation for continuous outcomes, number of events and the mean follow-up period for count outcomes and number of participants with events and the mean follow-up period for time-to-event outcomes
 - Natural logarithm of hazard ratio and its standard error if this was reported rather than the number of participants with events and the mean follow-up period for time-to-event outcomes

• Data on potential effect modifiers:
 - Participant characteristics such as sex, gestational age, birthweight, use of antenatal steroids
 - Details of the intervention and control
 - Length of follow-up
 - Information related to ‘Risk of Bias’ assessment

• Other data:
 - Year and language of publication
 - Country
 - Year(s) in which the trial was conducted
 - Inclusion and exclusion criteria

We collected data at maximum follow-up provided and also at shorter (up to three months) and medium-term follow-up (three months to 1 year) where applicable. We attempted to contact trial authors in the case of unclear or missing information. Any differences in opinion were resolved by discussion.
eMethods – Data Synthesis

A network meta-analysis was conducted to compare thresholds of FiO2 simultaneously for each of the primary and secondary outcomes. Network meta-analysis combines direct evidence within trials and indirect evidence across trials [1]. Our analysis was based on guidance by the National Institute for Clinical Excellence (NICE) Decision Support Unit (DSU).[1–4]

We obtained a network plot to ensure that the trials were connected by interventions [3]. We excluded any trials unconnected to the network from the meta-analysis and reported only the direct pair-wise meta-analysis for such comparisons.

We conducted a Bayesian network meta-analysis using the Markov chain Monte Carlo method. We used a fixed-effect model and random-effects model for the network meta-analysis. For each pair-wise comparison in a table, we reported the fixed-effect model if the two models reported similar results; otherwise, we reported the more conservative model.

We used a hierarchical Bayesian model using three different initial values, employing codes provided by NICE DSU [5]. We used a normal distribution with large variance (10,000) for treatment effect priors (vague or flat priors). For the random-effects model, we used a prior distributed uniformly (limits: 0 to 5) for between-trial standard deviation but assumed the same between-trial standard deviation across treatment comparisons [5]. We used a ‘burn-in’ of 10,000 simulations, checked for convergence (of effect estimates and between-study heterogeneity) visually (i.e. whether the values in different chains mix very well by visualisation) and ran the models for another 10,000 simulations to obtain effect estimates. If we did not obtain convergence, we increased the number of simulations for the ‘burn-in’.

We estimated the probability that each intervention ranks at one of the possible positions using the NICE DSU codes [5].

Analysis was carried out using OpenBUGS, version 3.2.3

We assessed inconsistency (statistical evidence of the violation of transitivity assumption) by fitting both an inconsistency model and a consistency model. We used inconsistency models employed in the NICE DSU manual, as we used a common between-study standard deviation [2].

In the presence of inconsistency, we assessed whether the inconsistency was due to clinical or methodological heterogeneity.

We performed the direct comparisons using the same codes and the same technical details

Subgroup/sensitivity analysis: Subgroup analysis was planned based on 1) trials at low risk of bias compared to trials at high risk of bias, 2) gestational age, 3) Current best practice – use of antenatal steroids and NCPAP. Due to a paucity of data these could not be carried out. A sensitivity analysis of current best practice was performed. No trials reported only per-protocol analysis results, therefore no best-worst case scenario/worst-best case scenario analyses as sensitivity analyses were required. No imputations were required for mean or standard deviation, therefore sensitivity analysis excluding same was not required.
eTable 1 – Risk of Bias Assessment

<table>
<thead>
<tr>
<th></th>
<th>Bev.</th>
<th>DuW</th>
<th>Dilm</th>
<th>Dunn</th>
<th>Egb</th>
<th>Finer</th>
<th>Kand</th>
<th>Katt</th>
<th>Kend</th>
<th>Lefor</th>
<th>Merr</th>
<th>Roja</th>
<th>Sand</th>
<th>Walti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomisation process</td>
<td>Low</td>
</tr>
<tr>
<td>Deviations from intended interventions</td>
<td>Low</td>
<td>SC</td>
<td>High</td>
<td>Low</td>
<td>SC</td>
<td>Low</td>
<td>SC</td>
<td>High</td>
<td>Low</td>
<td>SC</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>SC</td>
</tr>
<tr>
<td>Missing outcome data</td>
<td>Low</td>
</tr>
<tr>
<td>Measurement of the outcome</td>
<td>SC</td>
<td>Low</td>
</tr>
<tr>
<td>Selection of the reported result</td>
<td>SC</td>
</tr>
<tr>
<td>Overall risk of bias</td>
<td>SC</td>
<td>SC</td>
<td>High</td>
<td>SC</td>
<td>SC</td>
<td>SC</td>
<td>SC</td>
<td>High</td>
<td>SC</td>
<td>SC</td>
<td>SC</td>
<td>SC</td>
<td>SC</td>
<td>SC</td>
</tr>
</tbody>
</table>

eTable 1a – Risk of bias in each domain for each included study. Author 1: SC some concerns
Table 1b – Risk of bias in each domain for each included study, Author 2. SC some concerns

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomisation process</td>
<td>Low</td>
</tr>
<tr>
<td>Deviations from intended interventions</td>
<td>Low</td>
<td>SC</td>
<td>High</td>
<td>Low</td>
<td>SC</td>
<td>Low</td>
<td>SC</td>
<td>High</td>
<td>Low</td>
<td>SC</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Missing outcome data</td>
<td>Low</td>
</tr>
<tr>
<td>Measurement of the outcome</td>
<td>Low</td>
</tr>
<tr>
<td>Selection of the reported result</td>
<td>SC</td>
</tr>
<tr>
<td>Overall risk of bias</td>
<td>SC</td>
<td>SC</td>
<td>High</td>
<td>SC</td>
</tr>
</tbody>
</table>
eResults – Excluded Studies

None of the excluded studies met the inclusion criteria.

5 of the studies were identified as review articles or systematic reviews [6-10]. 1 study is an ongoing trial assessing surfactant thresholds for treatment [11]. We were unable to translate 2 studies and the abstracts did not provide sufficient information for inclusion [12,13].

23 were not randomised control trials [14-36]. 6 trials met the inclusion criteria but did not list an fio2 for treatment with selective surfactant [37-42].

55 did not meet the inclusion criteria of a trial assessing prophylactic treatment with surfactant vs selective treatment with surfactant [43-96]. 10 of the references are trial register or published abstracts of an included trial: [97-106].

3 references were abstracts without a published trial found despite attempts to contact the author [107-109].
eResults – Primary Outcome Mortality

A random-effect model was used for the network meta-analysis because it was more conservative. Deviance Information Criteria (DIC) for fixed model was 171.1, random 172.3. Median between-study standard deviation for the random-effect model 0.23 (95% CrI 0.011, 0.742), variance 0.055. Model used for direct comparisons are included in Table 1 with the odds ratio for each comparison.

eTable 2. Odds ratio for both the direct and network comparison of the primary outcome

<table>
<thead>
<tr>
<th>Mortality</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>1.88[0.25,16.51] *</td>
<td>1.52[0.87,2.52] *</td>
<td>0.8[0.62,1.04] #</td>
<td>1.1[0.67,1.78] #</td>
<td></td>
</tr>
<tr>
<td>Threshold 30%</td>
<td>1.81[1.00,3.44]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>1.52[0.94,2.40]</td>
<td>0.84[0.37,1.77]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Threshold 50%</td>
<td>0.82[0.50,1.41]</td>
<td>0.45[0.20,1.01]</td>
<td>0.54[0.28,1.13]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Threshold 60%</td>
<td>1.16[0.63,2.29]</td>
<td>0.64[0.27,1.60]</td>
<td>0.76[0.36,1.80]</td>
<td>1.41[0.64,3.31]</td>
<td></td>
</tr>
</tbody>
</table>

Network Meta-analysis comparisons are below the greyed line, direct comparisons are above the line. Comparisons that did not reach statistical significance (credibility intervals for the odds ratio cross 1) are highlighted in yellow. Comparisons that do reach statistical significance are highlighted in blue.

Most conservative method of analysis was used in each case. * denotes fixed-effect model, # denotes random effect model for direct comparisons.
eResults – Sensitivity Analysis of Current Best Practice

Six studies met the criteria. This included 2554 patients. 1268 were in the combined prophylaxis arm and were compared with 138 (one study) in the 30% threshold arm, 183 (2 studies) in the 40% arm, 727 (two studies) in the 50% arm and 216 (one study) in the 60% arm.

eTable 4 shows the odds ratio for each comparison within the analysis, along with the model of comparison used. Most conservative model was used in each case. Fixed-effects model was used for all outcomes, except pneumothorax, where random-effects model was used. DIC, between-study variance with 95% CrI and variance where applicable are shown in eTable 5.

There was no statistically significant difference seen in mortality, BPD, pneumothorax, or grade 3/4 IVH. Each comparison was deemed to be at very-low quality of evidence.

eTable 3. Odds Ratio for Sensitivity Analysis

<table>
<thead>
<tr>
<th>Mortality</th>
<th>Prophylaxis</th>
<th>30% Threshold</th>
<th>40% Threshold</th>
<th>50% Threshold</th>
<th>60% Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>1.02[0.45,2.34] *</td>
<td>1.33[0.69,2.6] *</td>
<td>0.81[0.61,1.07] *</td>
<td>0.55[0.23,1.29] *</td>
<td></td>
</tr>
<tr>
<td>30% Threshold</td>
<td>1.03[0.45,2.35]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40% Threshold</td>
<td>1.32[0.69,2.61]</td>
<td>1.30[0.45,3.77]</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>50% Threshold</td>
<td>0.81[0.61,1.07]</td>
<td>0.79[0.33,1.90]</td>
<td>0.61[0.29,1.24]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>60% Threshold</td>
<td>0.56[0.23,1.29]</td>
<td>0.54[0.16,1.77]</td>
<td>0.42[0.14,1.22]</td>
<td>0.69[0.27,1.66]</td>
<td></td>
</tr>
</tbody>
</table>

eTable 3a. Odds ratio for sensitivity analysis for mortality

<table>
<thead>
<tr>
<th>Bronchopulmonary Dysplasia</th>
<th>Prophylaxis</th>
<th>30% Threshold</th>
<th>40% Threshold</th>
<th>50% Threshold</th>
<th>60% Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>1.39[0.87,2.23]</td>
<td>0.83[0.39,1.7]</td>
<td>0.93[0.74,1.16]</td>
<td>1.3[0.84,2.02]</td>
<td></td>
</tr>
<tr>
<td>30% Threshold</td>
<td>1.40[0.88,2.24]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40% Threshold</td>
<td>0.83[0.39,1.70]</td>
<td>0.59[0.24,1.40]</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>50% Threshold</td>
<td>0.93[0.74,1.16]</td>
<td>0.66[0.39,1.11]</td>
<td>1.12[0.53,2.44]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>60% Threshold</td>
<td>1.29[0.84,2.02]</td>
<td>0.93[0.49,1.76]</td>
<td>1.57[0.68,3.74]</td>
<td>1.40[0.86,2.30]</td>
<td></td>
</tr>
</tbody>
</table>

eTable 3b. Odds ratio for sensitivity analysis for bronchopulmonary dysplasia
Pneumothorax

<table>
<thead>
<tr>
<th></th>
<th>Prophylaxis</th>
<th>30% Threshold</th>
<th>40% Threshold</th>
<th>50% Threshold</th>
<th>60% Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td></td>
<td>4.78[1.42, 22.97]</td>
<td>3.73[0.01, 3209.92]</td>
<td>1.07[0.71, 1.62]</td>
<td>1.73[0.67, 4.82]</td>
</tr>
<tr>
<td>30% Threshold</td>
<td>4.99[0.00, 6953.50]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40% Threshold</td>
<td>3.09[0.02, 2455.29]</td>
<td>0.65[0.00, 14472.42]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50% Threshold</td>
<td>1.52[0.01, 324.08]</td>
<td>0.31[0.00, 2426.00]</td>
<td>0.48[0.00, 754.46]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60% Threshold</td>
<td>1.73[0.00, 2151.67]</td>
<td>0.36[0.00, 8681.94]</td>
<td>0.54[0.00, 2972.03]</td>
<td>1.13[0.00, 8391.71]</td>
<td>-</td>
</tr>
</tbody>
</table>

*Table 3c. Odds ratio for sensitivity analysis for pneumothorax

Major Morbidity

<table>
<thead>
<tr>
<th></th>
<th>Prophylaxis</th>
<th>30% Threshold</th>
<th>40% Threshold</th>
<th>50% Threshold</th>
<th>60% Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td></td>
<td>1.21[0.87, 1.7]</td>
<td>1.15[0.8, 1.66]</td>
<td>1.06[0.93, 1.21]</td>
<td>2.05[1.45, 2.92]</td>
</tr>
<tr>
<td>30% Threshold</td>
<td>1.20[0.86, 1.68]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40% Threshold</td>
<td>1.16[0.81, 1.66]</td>
<td>0.96[0.58, 1.57]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50% Threshold</td>
<td>1.06[0.93, 1.21]</td>
<td>0.88[0.62, 1.26]</td>
<td>0.92[0.63, 1.34]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60% Threshold</td>
<td>2.05[1.46, 2.93]</td>
<td>1.70[1.05, 2.78]</td>
<td>1.77[1.07, 2.95]</td>
<td>1.92[1.34, 2.83]</td>
<td>-</td>
</tr>
</tbody>
</table>

*Table 3d. Odds ratio for sensitivity analysis for major morbidity

Grade 3 or 4 Intraventricular Haemorrhage

<table>
<thead>
<tr>
<th></th>
<th>Prophylaxis</th>
<th>30% Threshold</th>
<th>40% Threshold</th>
<th>50% Threshold</th>
<th>60% Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td></td>
<td>1.62[0.24, 14.17]</td>
<td>2.16[0.86, 5.88]</td>
<td>1.28[0.93, 1.78]</td>
<td>0.71[0.23, 2.12]</td>
</tr>
<tr>
<td>30% Threshold</td>
<td>1.64[0.24, 14.41]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40% Threshold</td>
<td>2.16[0.87, 5.98]</td>
<td>1.32[0.12, 11.55]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50% Threshold</td>
<td>1.28[0.93, 1.78]</td>
<td>0.78[0.09, 5.46]</td>
<td>0.59[0.21, 1.56]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60% Threshold</td>
<td>0.71[0.23, 2.09]</td>
<td>0.43[0.04, 3.90]</td>
<td>0.33[0.07, 1.36]</td>
<td>0.55[0.17, 1.71]</td>
<td>-</td>
</tr>
</tbody>
</table>

*Table 3e. Odds ratio for sensitivity analysis for grade 3 or 4 Intraventricular Haemorrhage

eTable 3 (a–e) above shows the odds ratio for the network and direct comparisons for each outcome in the sensitivity analysis. Network meta-analysis comparisons are below the greyed line, direct comparisons are above the line. Comparisons that did not reach statistical significance (credibility intervals for the odds ratio cross 1) are highlighted in yellow. Comparisons that do reach statistical significance are highlighted in blue. Most conservative model of analysis was used in each case.

*denotes fixed-effect model, # denotes random effect model for the direct comparison, & denotes only one study in comparison leading to use of the random effects model, & denotes zero events in at least one arm of one study leading to use of the fixed effect model.
eTable 4. Models used for outcomes for sensitivity analysis

<table>
<thead>
<tr>
<th>Outcome</th>
<th>DIC – Fixed</th>
<th>DIC – Random</th>
<th>Model Used</th>
<th>SD</th>
<th>95% CrI</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>74.72</td>
<td>76.47</td>
<td>Fixed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BPD</td>
<td>76.01</td>
<td>76.54</td>
<td>Fixed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>75.86</td>
<td>63.82</td>
<td>Random</td>
<td>3.424</td>
<td>1.22, 4.92</td>
<td>11.72</td>
</tr>
<tr>
<td>Major Morbidity</td>
<td>89.54</td>
<td>89.58</td>
<td>Fixed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3/4 IVH</td>
<td>66.33</td>
<td>67.54</td>
<td>Fixed</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

eTable 4. Models used for outcomes for sensitivity analysis
SD – between study standard deviation, CrI – Credible interval, BPD – bronchopulmonary dysplasia, IVH – intraventricular haemorrhage
eResults – Secondary Outcomes

1. Bronchopulmonary Dysplasia
Network meta-analysis was performed using a fixed-effects model as it was more conservative. DIC for the fixed-effect model was 91.45, random-effect model 92.9. Model used for the direct comparisons along with odds ratio for each comparison, both network and direct are shown in eTable 3a.

<table>
<thead>
<tr>
<th>Bronchopulmonary Dysplasia</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>1.4[0.87,2.23] ^</td>
<td>0.77[0.37,1.61] *</td>
<td>0.93[0.74,1.16] *</td>
<td>1.02[0.71,1.45] *</td>
<td></td>
</tr>
<tr>
<td>Threshold 30%</td>
<td>1.39[0.87,2.24]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>0.77[0.37,1.58]</td>
<td>0.55[0.23,1.30]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Threshold 50%</td>
<td>0.93[0.74,1.16]</td>
<td>0.66[0.39,1.12]</td>
<td>1.20[0.57,2.61]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Threshold 60%</td>
<td>1.02[0.72,1.45]</td>
<td>0.73[0.40,1.32]</td>
<td>1.32[0.60,3.01]</td>
<td>1.10[0.72,1.67]</td>
<td>-</td>
</tr>
</tbody>
</table>

Network meta-analysis comparisons are below the greyed line, direct comparisons are above the line.
Comparisons that did not reach statistical significance (credibility intervals for the odds ratio cross 1) are highlighted in yellow. Comparisons that do reach statistical significance are highlighted in blue.

Most conservative method of analysis was used in each case.

* denotes fixed effect model, # denotes random effect model for direct comparisons, & denotes only one study in comparison with no convergence of random effect model – fixed effect used, ^ denotes zero events in one arm of one study leading to use of the fixed effect model

2. Chronic Lung Disease
Network meta-analysis was performed using a random-effects model, as the most conservative model.
DIC for the fixed-effect model was 109, random-effect model 110.7. Median between-study standard deviation 0.1751 (95% CrI 0.0078, 0.8729), variance 0.031.
Models used in the direct comparisons with odds ratio for each comparison are shown in table 3.

<table>
<thead>
<tr>
<th>Chronic Lung Disease</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>1.47[0.07,30.69] #</td>
<td>1.07[0.81,1.43] *</td>
<td>3.97[0.88,30.78] #</td>
<td>0.6[0.33,1.06] *</td>
<td></td>
</tr>
<tr>
<td>Threshold 30%</td>
<td>1.48[0.82,2.63]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>1.05[0.63,1.64]</td>
<td>0.71[0.32,1.48]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
3. Bronchopulmonary Dysplasia or Chronic Lung Disease at maximal follow-up

For this outcome, a random-effect model was used for the network meta-analysis as the more conservative choice.

DIC for the fixed model was 152.9, random model 154.7. Median between study deviation 0.1619 (95% CrI 0.0071, 0.678), variance 0.26.

Models used in the direct comparisons along with odds ratio for each comparison are shown in eTable 3c.

<table>
<thead>
<tr>
<th>CLD or BPD</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>1.45[1.09,1.93] *</td>
<td>0.94[0.68,1.29] ^</td>
<td>0.93[0.74,1.16] ^</td>
<td>0.91[0.65,1.26] *</td>
<td></td>
</tr>
<tr>
<td>Threshold 30%</td>
<td>1.45[0.95,2.21]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>0.91[0.54,1.41]</td>
<td>0.63[0.32,1.13]</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 50%</td>
<td>0.96[0.59,2.00]</td>
<td>0.66[0.36,1.58]</td>
<td>1.06[0.57,2.75]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 60%</td>
<td>0.86[0.47,1.34]</td>
<td>0.59[0.28,1.06]</td>
<td>0.94[0.46,1.81]</td>
<td>0.90[0.32,1.64]</td>
<td></td>
</tr>
</tbody>
</table>

4. Pneumothorax (or other air-leak)

Network meta-analysis was performed using a random-effects model, as the most conservative model.

DIC for the fixed-effect model was 159.5, random-effect model was 154.3. Between study standard deviation was 0.859 (95% CrI 0.197, 2.115), variance 0.74.

Models used in the direct comparisons along with odds ratio for each comparison are shown in eTable 3d.

<table>
<thead>
<tr>
<th>Pneumothorax</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>2.36[0.29,22.15] #</td>
<td>1.38[0.89,2.17] *</td>
<td>0.92[0.63,1.35] *</td>
<td>1.67[0.88,3.19] *</td>
<td></td>
</tr>
<tr>
<td>Threshold 30%</td>
<td>2.41[0.61,10.48]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>1.26[0.42,3.97]</td>
<td>0.52[0.08,3.13]</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 50%</td>
<td>0.81[0.19,3.47]</td>
<td>0.33[0.04,2.49]</td>
<td>0.64[0.10,3.99]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 60%</td>
<td>2.05[0.50,10.72]</td>
<td>0.85[0.11,7.42]</td>
<td>1.62[0.27,12.07]</td>
<td>2.54[0.35,23.13]</td>
<td></td>
</tr>
</tbody>
</table>

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance placed on this supplemental material which has been supplied by the author(s).
5. Surfactant Treatment (proportion requiring surfactant)

Network meta-analysis not performed.

Proportions receiving surfactant (binary):
- 99.07% of the prophylaxis group received any surfactant
- 41.54% in the 30% group
- 53.82% in the 40% group
- 64.42% in the 50% group
- 46.22% of 60% group.

6. Number of Surfactant Doses Required

Network meta-analysis was performed using a random-effects model, as the most conservative model.

DIC for the fixed-effect model was 270, random-effect model 269. Between study standard deviation 2.504 (95% CrI 0.1212, 4.879), variance 6.27.

Models used in the direct comparisons along with odds ratio for each comparison are shown in eTable 3f.

<table>
<thead>
<tr>
<th>Surfactant - Number of Doses</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td></td>
<td>0.51[0.46,0.56] *</td>
<td>0.71[0.63,0.8] *</td>
<td>0.65[0.58,0.73] *</td>
<td>0.26[0.21,0.32] *</td>
</tr>
<tr>
<td>Threshold 30%</td>
<td>0.51[0.46,0.56]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>0.71[0.63,0.81]</td>
<td>1.41[1.20,1.65]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 50%</td>
<td>0.65[0.58,0.73]</td>
<td>1.29[1.10,1.51]</td>
<td>0.91[0.77,1.08]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 60%</td>
<td>0.26[0.21,0.32]</td>
<td>0.52[0.41,0.65]</td>
<td>0.37[0.29,0.47]</td>
<td>0.40[0.32,0.51]</td>
<td></td>
</tr>
</tbody>
</table>

eTable 5e. Odds ratio for the comparisons of both the direct and network comparisons for number of surfactant doses required. Description of table as per eTable 3a.

7. Total Number of Major Morbidities

Network meta-analysis was performed using a fixed-effects model, as the most conservative model. DIC for the fixed-effect model was 168.5, random-effect model 168.5.

Models used in the direct comparisons along with odds ratio for each comparison are shown in eTable 3g.

<table>
<thead>
<tr>
<th>Major Morbidity</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>1.14[0.93,1.4] *</td>
<td>1.18[0.89,1.56] *</td>
<td>1.04[0.92,1.18] *</td>
<td>1.02[0.81,1.28] *</td>
<td></td>
</tr>
<tr>
<td>Threshold 30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>1.18[0.94,1.40]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 50%</td>
<td>1.04[0.96,1.18]</td>
<td>0.91[0.72,1.16]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s).
Grade 3 or 4 Intraventricular Haemorrhage

Network meta-analysis was performed using a random-effects model, as the most conservative model. DIC for the fixed-effect model was 138.3, random-effect model 137.8. Between study standard deviation 0.449 (95% CrI 0.326, 1.281), variance 0.2. Models used in the direct comparisons along with odds ratio for each comparison are shown in eTable 3h.

<table>
<thead>
<tr>
<th>Grade 3 or 4 Intraventricular Haemorrhage</th>
<th>Prophylaxis</th>
<th>Threshold 0.3</th>
<th>Threshold 0.4</th>
<th>Threshold 0.5</th>
<th>Threshold 0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>2.16[0.14,34.19] *</td>
<td>1.59[0.91,2.84] *</td>
<td>1.21[0.9,1.63] *</td>
<td>0.67[0.32,1.32] *</td>
<td></td>
</tr>
<tr>
<td>Threshold 0.3</td>
<td>2.01[0.83,5.46]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 0.4</td>
<td>1.69[0.77,4.10]</td>
<td>0.84[0.24,2.93]</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 0.5</td>
<td>1.11[0.44,2.47]</td>
<td>0.55[0.14,1.75]</td>
<td>0.65[0.18,1.94]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 0.6</td>
<td>0.68[0.22,2.03]</td>
<td>0.34[0.07,1.35]</td>
<td>0.40[0.09,1.52]</td>
<td>0.61[0.16,2.60]</td>
<td></td>
</tr>
</tbody>
</table>

Periventricular Leukomalacia

Network meta-analysis was performed using a fixed-effect model, as the most conservative model. DIC for the fixed-effect model was 78.82, random-effect model 80.17. Models used in the direct comparisons along with odds ratio for each comparison are shown in eTable 3i.

<table>
<thead>
<tr>
<th>Periventricular Leukomalacia</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>0.81[0.51,1.28] *</td>
<td>0.63[0.07,4.18] *</td>
<td>0.81[0.22,2.77] *</td>
<td>0.58[0.2,1.5] *</td>
<td></td>
</tr>
<tr>
<td>Threshold 30%</td>
<td>0.81[0.51,1.28]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>0.64[0.07,4.25]</td>
<td>0.79[0.09,5.53]</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 50%</td>
<td>0.80[0.21,2.81]</td>
<td>0.98[0.25,3.79]</td>
<td>1.26[0.13,14.92]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 60%</td>
<td>0.58[0.19,1.50]</td>
<td>0.71[0.22,2.06]</td>
<td>0.91[0.10,9.56]</td>
<td>0.72[0.14,3.64]</td>
<td></td>
</tr>
</tbody>
</table>
10. Necrotising Enterocolitis

Network meta-analysis was performed using a fixed-effects model, as the most conservative model. DIC for the fixed-effect model was 112.5, random-effect model 114.4. Models used in the direct comparisons along with odds ratio for each comparison are shown in eTable 3j.

<table>
<thead>
<tr>
<th>Necrotising Enterocolitis</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td></td>
<td>0.86[0.54,1.36] *</td>
<td>1.27[0.81,1.27] *</td>
<td>1.27[0.92,1.77] *</td>
<td>1.15[0.61,2.08]</td>
</tr>
<tr>
<td>Threshold 30%</td>
<td></td>
<td>1.00[0.03,37.98]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Threshold 40%</td>
<td></td>
<td>1.27[0.81,1.27]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Threshold 50%</td>
<td></td>
<td>1.27[0.91,1.77]</td>
<td>1.00[0.57,1.74]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Threshold 60%</td>
<td></td>
<td>1.15[0.61,2.10]</td>
<td>1.33[0.61,2.84]</td>
<td>0.90[0.41,1.91]</td>
<td>0.90[0.44,1.80]</td>
</tr>
</tbody>
</table>

eTable 3j. Odds ratio for the comparisons of both the direct and network comparisons for necrotising enterocolitis. Description of table as per eTable 3a

11. Retinopathy of Prematurity

Network meta-analysis was performed using a random-effects model, as the most conservative model. DIC for the fixed-effect model was 65.68, random-effect model 67.53. Between study standard deviation 0.517 (95% CrI 0.0198, 3.845), variance 0.27. Models used in the direct comparisons along with odds ratio for each comparison are shown in eTable 3k.

<table>
<thead>
<tr>
<th>Retinopathy of Prematurity > Stage 2</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td></td>
<td>1.02[0.03,37.98]</td>
<td>0.9[0.34,2.31] *</td>
<td>1.01[0.72,1.41] *</td>
<td>2.35[1.02,5.42]</td>
</tr>
<tr>
<td>Threshold 30%</td>
<td></td>
<td>1.01[0.01,96.83]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Threshold 40%</td>
<td></td>
<td>0.87[0.09,7.05]</td>
<td>0.85[0.01,117.92]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Threshold 50%</td>
<td></td>
<td>0.99[0.12,6.96]</td>
<td>0.97[0.01,121.39]</td>
<td>1.14[0.06,23.17]</td>
<td>-</td>
</tr>
<tr>
<td>Threshold 60%</td>
<td></td>
<td>2.36[0.13,40.29]</td>
<td>2.31[0.01,464.98]</td>
<td>2.69[0.07,101.80]</td>
<td>2.38[0.07,76.63]</td>
</tr>
</tbody>
</table>

eTable 3k. Odds ratio for the comparisons of both the direct and network comparisons for retinopathy of prematurity greater than stage 2. Description of table as per eTable 3a
References

27. Lefort S, Diniz EMA, Vaz FAC (1999) A follow-up clinical trial involving preterm neonates at risk for Respiratory Distress Syndrome (RDS), submitted to prophylactic surfactant of porcine origin comparing two different dosage regimens. 4th World Congress of Perinatal Medicine, Medimond S R L, 40128 Bologna
https://ClinicalTrials.gov/show/NCT01306240.
52. CTRI/2008/091/000234 (2009) Early Surfactant Therapy to prevent need for ventilation for preterm infants(gestation &lt;34weeks)on Bubble CPAP. (trans: No sponsor N).
53. CTRI/2015/07/005968 (2015) Exogenous surfactant obtained from goat lungs for treating respiratory difficulty due to lack of surfactant in preterm neonates (trans: All India Institute of Medical Sciences New Delhi Y).
62. Hospital D, University tRIoSotTMM (2016) Surfactant Administration in Preterm Infants. https://ClinicalTrials.gov/show/NCT02821273,
63. Hospital D, University tRIoSotTMM (2017) Surfactant for Neonate With Acute Respiratory Distress Syndrome (ARDS). https://ClinicalTrials.gov/show/NCT03217162,
64. Institute OHR (2013) A Multi-center Trial to Determine if Curosurf® Reduces the Duration of Mechanical Ventilation in Very Preterm Infants. https://ClinicalTrials.gov/show/NCT01709409,
73. Manitoba Uo (2012) Early CPAP And Large Volume Minimally Invasive Surfactant (ECALMIST) in Preterm Infants With RDS. https://ClinicalTrials.gov/show/NCT01553292,
92. University XHoCS (2007) Early NCPAP Before Surfactant Treatment in Very Preterm Infants With RDS. https://ClinicalTrials.gov/show/NCT01996670,
97. Ctri (2009) Early Surfactant Therapy to prevent need for ventilation for preterm infants(gestation <34weeks)on Bubble CPAP (trans: No sponsor N),

Online Only Material

1) eMethods - Search Strategy
2) eMethods - Data extraction and Management
3) eMethods - Data Synthesis
4) eResults - Risk of Bias Assessment
 eTable 1 – Risk of Bias Assessment
5) eResults - Excluded Studies.
6) eResults - Primary Outcome Mortality
 eTable 2 – Odds ratio for both the direct and network comparison of the primary outcome
7) eResults - Secondary Outcomes
 eTable 3 - Odds ratio for both the direct and network comparison for secondary outcomes
8) eResults - Sensitivity Analysis of Current Best Practice
 eTable 4 - Odds Ratio for Sensitivity Analysis
 eTable 5 - Models used for outcomes for sensitivity analysis
eMethods – Search Strategy

1) The Central Register of Controlled Trials (CENTRAL) in the Cochrane Library

Searched from inception to March 2020

Search strategy:

1 MeSH descriptor: [Infant, Very Low Birth Weight] explode all trees
#2 MeSH descriptor: [Infant, Newborn] explode all trees
#3 MeSH descriptor: [Infant, Extremely Low Birth Weight] explode all trees
#4 MeSH descriptor: [Infant, Low Birth Weight] explode all trees
#5 MeSH descriptor: [Infant, Premature] explode all trees
#6 MeSH descriptor: [Infant, Extremely Premature] explode all trees
#7 MeSH descriptor: [Premature Birth] explode all trees
#8 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7
#9 Birth, Premature OR Births, Premature OR Premature Births OR Preterm Birth OR Birth, Preterm OR Births, Preterm OR Preterm Births OR Infants, Premature OR Premature Infant OR Preterm Infants OR Infant, Preterm OR Infants, Preterm OR Preterm Infant OR Premature Infants OR Neonatal OR Prematurity OR Prematurity, Neonatal OR Extremely Premature Infant OR Infants, Extremely Premature OR Premature Infant, Extremely OR Extremely Premature Infants OR Extremely Preterm Infant OR Infant, Extremely Preterm or Premature Infant, Extremely OR Extremely Premature Infant or Extremely Low Birth Weight OR Extremely Low Birth Weight Infant OR (Extremely AND low AND birth AND weight) OR Very Low Birth Weight OR (Very AND low AND birth AND weight) OR Very Low Birth Weight Infant OR Low Birth Weight Infant OR Low Birth Weight OR Birth, Low Birth OR Births, Low Birth OR Births, Low Birth OR Low Birth Weights Infant OR Newborn OR Newborn Infant OR Newborn Infants OR newborns OR Newborn OR Neonate OR Neonates OR Infants, Premature OR Premature Infant OR Preterm Infants OR Infant, Preterm OR Infants, Preterm OR Preterm Infant OR Premature Infants OR Neonatal Prematurity OR Prematurity, Neonatal OR ELBW OR VLBW OR Extremely premature
#10 #8 OR #9
#11 MeSH descriptor: [Surface-Active Agents] explode all trees
#12 MeSH descriptor: [Pulmonary Surfactants] explode all trees
#13 Agents, Surface-Active OR Surface Active Agents OR Active Agents, Surface OR Agents, Surface Active OR Tensides OR Surfactants OR Surfactant OR Amphiphilic Agents OR Agents, Amphiphilic OR Surfactants, Pulmonary OR Pulmonary Surfactant OR Surfactant, Pulmonary
#14 #11 OR #12 OR #13
#15 #8 AND #14

2) MEDLINE (PubMed)

Searched from inception to March 2020

Search strategy:

a) Population – neonates
"Infant, Newborn"[Mesh]
"Infant, Extremely Low Birth Weight"[Mesh]
"Infant, Low Birth Weight"[Mesh]
"Infant, Very Low Birth Weight"[Mesh]
"Infant, Premature"[Mesh]
"Extremely Premature"[Mesh]
"Premature Birth"[Mesh]

Entry terms:
Birth, Premature
Births, Premature
Premature Births
Preterm Birth
Birth, Preterm
Births, Preterm
Preterm Births
Infants, Premature
Premature Infant
Preterm Infants
Infant, Preterm
Infants, Preterm
Preterm Infant
Premature Infants
Neonatal Prematurity
Prematurity, Neonatal
Extremely Premature Infant
Infants, Extremely Premature
Premature Infant, Extremely
Premature Infants, Extremely
Extremely Preterm Infants
Extremely Preterm Infant
Infant, Extremely Preterm
Infants, Extremely Preterm
Preterm Infant, Extremely
Preterm Infants, Extremely
Extremely Premature Infants
Extremely-Low-Birth-Weight [all fields] OR
Extremely Low Birth Weight [all fields] OR
Extremely Low Birth Weight Infant
Extremely AND low AND birth AND weight [all fields] OR
Very Low Birth Weight [all fields] OR
Very Low-Birth-Weight [all fields] OR
Very AND low AND birth AND weight OR
Infant, Very-Low-Birth-Weight [all fields] OR
Infants, Very-Low-Birth-Weight [all fields] OR
Very Low Birth Weight Infant [all fields] OR
Very-Low-Birth-Weight Infants [all fields] OR
Low-Birth-Weight Infant
Infant, Low-Birth-Weight
Infants, Low-Birth-Weight
Low Birth Weight Infant
Low-Birth-Weight Infants
Low Birth Weight
Birth Weight, Low
Birth Weights, Low
Low Birth Weights
Infants, Newborn [all fields] OR
Newborn Infant [all fields] OR
Newborn Infants [all fields] OR
Newborns [all fields] OR
Newborn [all fields] OR
Neonate [all fields] OR
Neonates [all fields] OR
ELBW [all fields] OR
VLBW [all fields] OR
Extreme prematurity [all fields]
b) **Intervention – Surfactant**

34 "Surface-Active Agents"[Mesh]
35 "Pulmonary Surfactants"[Mesh]

Entry terms
36 Agents, Surface-Active [all fields] OR
37 Surface Active Agents [all fields] OR
38 Active Agents, Surface [all fields] OR
39 Agents, Surface Active [all fields] OR
40 Tensides [all fields] OR
41 Surfactants [all fields] OR
42 Surfactant [all fields] OR
43 Amphiphilic Agents [all fields] OR
44 Agents, Amphiphilic [all fields] OR
45 Surfactants, Pulmonary [all fields] OR
46 Pulmonary Surfactant [all fields] OR
47 Surfactant, Pulmonary [all fields]

The population and intervention search strategies above were combined with boolean operator ‘AND’. The pubmed controlled clinical trials filter was applied.

3) **EMBASE**

Searched from inception to March 2020

Search strategy:
1. infant newborn.mp. or exp newborn/
2. extremely low birth weight.mp. or exp very low birth weight/ or exp extremely low birth weight/ or exp very low birth weight/ or exp prematurity/
3. extremely-low-birth-weight.mp.
4. (extremely and low and birth and weight).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device name, keyword, floating subheading word, candidate term word]
5. very low birth weight.mp. or exp very low birth weight/
6. very-low-birth-weight.mp.
7. (very and low and birth and weight).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term word]
8. newborn infant.mp.
9. neonate.mp.
10. premature.mp.
11. exp premature labor/ or preterm.mp. or exp gestational age/
12. elbw.mp.
13. vlbw.mp.
14. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13
15. exp surfactant associated protein/ or exp surfactant/ or surfactant.mp.
16. pulmonary surfactant.mp. or exp lung surfactant/
17. surface active agents.mp. or surfactant/
18. surfactant/ or tensides.mp.
19. surfactants.mp. or surfactant/
20. 15 or 16 or 17 or 18 or 19
21. (random* or factorial* or crossover* or cross over* or cross-over* or placebo* or doubl* blind* or singl* blind* or assign* or allocat* or volunteer*).af.
22. exp crossover-procedure/ or exp double-blind procedure/ or exp randomized controlled trial/ or exp single-blind procedure/
23. 21 or 22
24. 14 and 20 and 23
4) **Science Citation Index Expanded (Web of Science)**
Searched from inception to March 2020
Search strategy:

$$TI = (\text{Surface-Active Agents OR Pulmonary Surfactants OR Agents, Surface-Active OR Active Agents, Surface OR Agents, Surface Active OR Surfactants OR Surfactant OR Surfactants, Pulmonary OR Pulmonary Surfactant OR Surfactant, Pulmonary})$$

$$TI = (\text{Infant, Extremely Low Birth Weight OR Infant, Low Birth Weight OR Infant, Very Low Birth Weight OR Infant, Premature OR Extremely Premature})$$

$$TI = (\text{Infants, Premature OR Premature Infant OR Preterm Infants OR Infant, Preterm OR Preterm Infant OR Premature Infants OR Neonatal Prematurity OR Prematurity, Neonatal OR Extremely Premature Infant OR Infants, Extremely Premature OR Premature Infant, Extremely OR Premature Infants, Extremely OR Extremely Preterm Infants})$$

$$TI = (\text{Extremely Preterm Infant OR Extremely Premature Infants OR Extremely-Low-Birth-Weight OR Extremely Low Birth Weight [all fields] OR (Extremely AND low AND birth AND weight) OR Very Low Birth Weight OR Very Low-Birth-Weight OR Neonate OR Neonates OR ELBW OR VLBW OR extreme prematurity})$$

$$TS=(\text{random* OR rct* OR crossover OR masked OR blind* OR placebo* OR meta-analysis OR systematic review* OR meta-analys*})$$

5) **ClinicalTrials.gov**
Searched from inception to March 2020
Condition: prematurity
Intervention: Surfactant

6) **World Health Organization International Clinical Trials Registry Platform**
(https://apps.who.int/trialsearch/)
Searched from inception to March 2020
Condition: neo*
Intervention: surfactant
eMethod – Data extraction and Management

Two authors independently extracted the data below in a pre-piloted data extraction form:

- **Outcome data (for each outcome and each intervention group):**
 - Number of participants randomised
 - Number of participants included for the analysis
 - Number of participants with events for binary outcomes, mean and standard deviation for continuous outcomes, number of events and the mean follow-up period for count outcomes and number of participants with events and the mean follow-up period for time-to-event outcomes
 - Natural logarithm of hazard ratio and its standard error if this was reported rather than the number of participants with events and the mean follow-up period for time-to-event outcomes

- **Data on potential effect modifiers:**
 - Participant characteristics such as sex, gestational age, birthweight, use of antenatal steroids
 - Details of the intervention and control
 - Length of follow-up
 - Information related to ‘Risk of Bias’ assessment

- **Other data:**
 - Year and language of publication
 - Country
 - Year(s) in which the trial was conducted
 - Inclusion and exclusion criteria

We collected data at maximum follow-up provided and also at shorter (up to three months) and medium-term follow-up (three months to 1 year) where applicable. We attempted to contact trial authors in the case of unclear or missing information. Any differences in opinion were resolved by discussion.
eMethods – Data Synthesis

A network meta-analysis was conducted to compare thresholds of FiO2 simultaneously for each of the primary and secondary outcomes. Network meta-analysis combines direct evidence within trials and indirect evidence across trials [1]. Our analysis was based on guidance by the National Institute for Clinical Excellence (NICE) Decision Support Unit (DSU). [1-4]

We obtained a network plot to ensure that the trials were connected by interventions [3]. We excluded any trials unconnected to the network from the meta-analysis and reported only the direct pair-wise meta-analysis for such comparisons.

We conducted a Bayesian network meta-analysis using the Markov chain Monte Carlo method.

We used a fixed-effect model and random-effects model for the network meta-analysis. For each pair-wise comparison in a table, we reported the fixed-effect model if the two models reported similar results; otherwise, we reported the more conservative model.

We used a hierarchical Bayesian model using three different initial values, employing codes provided by NICE DSU [5]. We used a normal distribution with large variance (10,000) for treatment effect priors (vague or flat priors). For the random-effects model, we used a prior distributed uniformly (limits: 0 to 5) for between-trial standard deviation but assumed the same between-trial standard deviation across treatment comparisons [5]. We used a 'burn-in' of 10,000 simulations, checked for convergence (of effect estimates and between-study heterogeneity) visually (i.e. whether the values in different chains mix very well by visualisation) and ran the models for another 10,000 simulations to obtain effect estimates. If we did not obtain convergence, we increased the number of simulations for the 'burn-in'.

We estimated the probability that each intervention ranks at one of the possible positions using the NICE DSU codes [5].

Analysis was carried out using OpenBUGS, version 3.2.3

We assessed inconsistency (statistical evidence of the violation of transitivity assumption) by fitting both an inconsistency model and a consistency model. We used inconsistency models employed in the NICE DSU manual, as we used a common between-study standard deviation [2].

In the presence of inconsistency, we assessed whether the inconsistency was due to clinical or methodological heterogeneity.

We performed the direct comparisons using the same codes and the same technical details

Subgroup/sensitivity analysis: Subgroup analysis was planned based on 1) trials at low risk of bias compared to trials at high risk of bias, 2) gestational age, 3) Current best practice – use of antenatal steroids and NCPAP. Due to a paucity of data these could not be carried out. A sensitivity analysis of current best practice was performed. No trials reported only per-protocol analysis results, therefore no best-worst case scenario/worst-best case scenario analyses as sensitivity analyses were required. No imputations were required for mean or standard deviation, therefore sensitivity analysis excluding same was not required.
eResults – Risk of Bias Assessment

eTable 1 – Risk of Bias Assessment

<table>
<thead>
<tr>
<th></th>
<th>Bev</th>
<th>DuW</th>
<th>Dilm</th>
<th>Dunn</th>
<th>Egb</th>
<th>Finer</th>
<th>Kand</th>
<th>Katt</th>
<th>Kend</th>
<th>Lefor</th>
<th>Merr</th>
<th>Roja</th>
<th>Sand</th>
<th>Walti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomisation process</td>
<td>Low</td>
</tr>
<tr>
<td>Deviations from intended interventions</td>
<td>Low</td>
<td>SC</td>
<td>High</td>
<td>Low</td>
<td>SC</td>
<td>High</td>
<td>Low</td>
<td>SC</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>SC</td>
<td>Low</td>
<td>SC</td>
</tr>
<tr>
<td>Missing outcome data</td>
<td>Low</td>
</tr>
<tr>
<td>Measurement of the outcome</td>
<td>SC</td>
<td>Low</td>
</tr>
<tr>
<td>Selection of the reported result</td>
<td>SC</td>
</tr>
<tr>
<td>Overall risk of bias</td>
<td>SC</td>
<td>SC</td>
<td>High</td>
<td>SC</td>
<td>SC</td>
<td>SC</td>
<td>SC</td>
<td>High</td>
<td>SC</td>
<td>SC</td>
<td>SC</td>
<td>SC</td>
<td>SC</td>
<td>SC</td>
</tr>
</tbody>
</table>

eTable 1a – Risk of bias in each domain for each included study. Author 1: SC some concerns
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomisation process</td>
<td>Low</td>
</tr>
<tr>
<td>Deviations from intended interventions</td>
<td>Low</td>
<td>SC</td>
<td>High</td>
<td>Low</td>
<td>SC</td>
<td>Low</td>
<td>SC</td>
<td>High</td>
<td>Low</td>
<td>SC</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>SC</td>
</tr>
<tr>
<td>Missing outcome data</td>
<td>Low</td>
</tr>
<tr>
<td>Measurement of the outcome</td>
<td>Low</td>
</tr>
<tr>
<td>Selection of the reported result</td>
<td>SC</td>
</tr>
<tr>
<td>Overall risk of bias</td>
<td>SC</td>
<td>SC</td>
<td>High</td>
<td>SC</td>
</tr>
</tbody>
</table>

eTable 1b – Risk of bias in each domain for each included study, Author 2. SC some concerns
eResults – Excluded Studies

None of the excluded studies met the inclusion criteria.

5 of the studies were identified as review articles or systematic reviews [6-10]. 1 study is an ongoing trial assessing surfactant thresholds for treatment [11]. We were unable to translate 2 studies and the abstracts did not provide sufficient information for inclusion [12,13]. 23 were not randomised control trials [14-36]. 6 trials met the inclusion criteria but did not list an fio2 for treatment with selective surfactant [37-42]. 55 did not meet the inclusion criteria of a trial assessing prophylactic treatment with surfactant vs selective treatment with surfactant [43-96]. 10 of the references are trial register or published abstracts of an included trial: [97-106]. 3 references were abstracts without a published trial found despite attempts to contact the author [107-109].
eResults – Primary Outcome Mortality

A random-effect model was used for the network meta-analysis because it was more conservative. Deviance Information Criteria (DIC) for fixed model was 171.1, random 172.3. Median between-study standard deviation for the random-effect model 0.23 (95% CrI 0.011, 0.742), variance 0.055. Model used for direct comparisons are included in Table 1 with the odds ratio for each comparison.

eTable 2. Odds ratio for both the direct and network comparison of the primary outcome

<table>
<thead>
<tr>
<th>Mortality</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td></td>
<td>1.88[0.25,16.51] *</td>
<td>1.52[0.87,2.52] *</td>
<td>0.8[0.62,1.04] #</td>
<td>1.1[0.67,1.78] #</td>
</tr>
<tr>
<td>Threshold 30%</td>
<td>1.81[1.00,3.44]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>1.52[0.94,2.40]</td>
<td>0.84[0.37,1.77]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Threshold 50%</td>
<td>0.82[0.50,1.41]</td>
<td>0.45[0.20,1.01]</td>
<td>0.54[0.28,1.13]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Threshold 60%</td>
<td>1.16[0.63,2.29]</td>
<td>0.64[0.27,1.60]</td>
<td>0.76[0.36,1.80]</td>
<td>1.41[0.64,3.31]</td>
<td>-</td>
</tr>
</tbody>
</table>

Network Meta-analysis comparisons are below the greyed line, direct comparisons are above the line. Comparisons that did not reach statistical significance (credibility intervals for the odds ratio cross 1) are highlighted in yellow. Comparisons that do reach statistical significance are highlighted in blue. Most conservative method of analysis was used in each case. * denotes fixed-effect model, # denotes random effect model for direct comparisons.
eResults – Sensitivity Analysis of Current Best Practice

Six studies met the criteria. This included 2554 patients. 1268 were in the combined prophylaxis arm and were compared with 138 (one study) in the 30% threshold arm, 183 (2 studies) in the 40% arm, 727 (two studies) in the 50% arm and 216 (one study) in the 60% arm.

eTable 4 shows the odds ratio for each comparison within the analysis, along with the model of comparison used. Most conservative model was used in each case.

Fixed-effects model was used for all outcomes, except pneumothorax, where random-effects model was used. DIC, between-study variance with 95% CrI and variance where applicable are shown in eTable 5.

There was no statistically significant difference seen in mortality, BPD, pneumothorax, or grade 3/4 IVH.

There was an increased rate of major morbidity in the 60% threshold group– 31 more per 1000 (95% CrI intervals 136 more to 572 more).

Each comparison was deemed to be at very-low quality of evidence.

eTable 3. Odds Ratio for Sensitivity Analysis

<table>
<thead>
<tr>
<th>Mortality</th>
<th>Prophylaxis</th>
<th>30% Threshold</th>
<th>40% Threshold</th>
<th>50% Threshold</th>
<th>60% Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>1.02 [0.45, 2.34]</td>
<td>1.33 [0.69, 2.6]</td>
<td>0.81 [0.61, 1.07]</td>
<td>0.55 [0.23, 1.29]</td>
<td></td>
</tr>
<tr>
<td>30% Threshold</td>
<td>1.03 [0.45, 2.35]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40% Threshold</td>
<td>1.32 [0.69, 2.61]</td>
<td>1.30 [0.45, 3.77]</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>50% Threshold</td>
<td>0.81 [0.61, 1.07]</td>
<td>0.79 [0.33, 1.90]</td>
<td>0.61 [0.29, 1.24]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>60% Threshold</td>
<td>0.56 [0.23, 1.29]</td>
<td>0.54 [0.16, 1.77]</td>
<td>0.42 [0.14, 1.22]</td>
<td>0.69 [0.27, 1.66]</td>
<td></td>
</tr>
</tbody>
</table>

eTable 3a. Odds ratio for sensitivity analysis for mortality

<table>
<thead>
<tr>
<th>Bronchopulmonary Dysplasia</th>
<th>Prophylaxis</th>
<th>30% Threshold</th>
<th>40% Threshold</th>
<th>50% Threshold</th>
<th>60% Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>1.39 [0.87, 2.23]</td>
<td>0.83 [0.39, 1.7]</td>
<td>0.93 [0.74, 1.16]</td>
<td>1.3 [0.84, 2.02]</td>
<td></td>
</tr>
<tr>
<td>30% Threshold</td>
<td>1.40 [0.88, 2.24]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40% Threshold</td>
<td>0.83 [0.39, 1.70]</td>
<td>0.59 [0.24, 1.40]</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>50% Threshold</td>
<td>0.93 [0.74, 1.16]</td>
<td>0.66 [0.39, 1.11]</td>
<td>1.12 [0.53, 2.44]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>60% Threshold</td>
<td>1.29 [0.84, 2.02]</td>
<td>0.93 [0.49, 1.76]</td>
<td>1.57 [0.68, 3.74]</td>
<td>1.40 [0.86, 2.30]</td>
<td></td>
</tr>
</tbody>
</table>

eTable 3b. Odds ratio for sensitivity analysis for bronchopulmonary dysplasia
<table>
<thead>
<tr>
<th>Pneumothorax</th>
<th>Prophylaxis</th>
<th>30% Threshold</th>
<th>40% Threshold</th>
<th>50% Threshold</th>
<th>60% Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>4.78[1.42,22.97] ^</td>
<td>3.73[0.01,3209.92] ^</td>
<td>1.07[0.71,1.62] *</td>
<td>1.73[0.67,4.82] ^</td>
<td></td>
</tr>
<tr>
<td>30% Threshold</td>
<td>4.99[0.00,6953.50]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40% Threshold</td>
<td>3.09[0.02,14472.42]</td>
<td>0.65[0.00,2455.29]</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>50% Threshold</td>
<td>1.52[0.01,754.46]</td>
<td>0.31[0.00,2426.00]</td>
<td>0.48[0.00,754.46]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>60% Threshold</td>
<td>1.73[0.00,8391.71]</td>
<td>0.36[0.00,8681.94]</td>
<td>0.54[0.00,2972.03]</td>
<td>1.13[0.00,8391.71]</td>
<td></td>
</tr>
</tbody>
</table>

eTable 3c. Odds ratio for sensitivity analysis for pneumothorax

<table>
<thead>
<tr>
<th>Major Morbidity</th>
<th>Prophylaxis</th>
<th>30% Threshold</th>
<th>40% Threshold</th>
<th>50% Threshold</th>
<th>60% Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>1.21[0.87,1.68] ^</td>
<td>1.15[0.81,1.66] *</td>
<td>1.06[0.93,1.21] *</td>
<td>2.05[1.45,2.92] ^</td>
<td></td>
</tr>
<tr>
<td>30% Threshold</td>
<td>1.20[0.86,1.68]</td>
<td>0.96[0.58,1.57]</td>
<td>0.88[0.62,1.34]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40% Threshold</td>
<td>1.16[0.81,1.66]</td>
<td>1.32[0.12,11.55]</td>
<td>0.92[0.63,1.34]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>50% Threshold</td>
<td>1.06[0.93,1.21]</td>
<td>0.78[0.09,5.46]</td>
<td>0.59[0.21,1.56]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>60% Threshold</td>
<td>2.05[1.46,2.93]</td>
<td>1.70[1.05,2.78]</td>
<td>1.77[1.07,2.95]</td>
<td>1.92[1.34,2.83]</td>
<td></td>
</tr>
</tbody>
</table>

eTable 3d. Odds ratio for sensitivity analysis for major morbidity

<table>
<thead>
<tr>
<th>Grade 3 or 4 Intraventricular Haemorrhage</th>
<th>Prophylaxis</th>
<th>30% Threshold</th>
<th>40% Threshold</th>
<th>50% Threshold</th>
<th>60% Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>1.62[0.24,14.17] ^</td>
<td>2.16[0.86,5.88] ^</td>
<td>1.28[0.93,1.78] *</td>
<td>0.71[0.23,2.12] ^</td>
<td></td>
</tr>
<tr>
<td>30% Threshold</td>
<td>1.64[0.24,14.14]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40% Threshold</td>
<td>2.16[0.87,5.98]</td>
<td>1.32[0.12,11.55]</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>50% Threshold</td>
<td>1.28[0.93,1.78]</td>
<td>0.78[0.09,5.46]</td>
<td>0.59[0.21,1.56]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>60% Threshold</td>
<td>0.71[0.23,2.09]</td>
<td>0.43[0.04,3.90]</td>
<td>0.33[0.07,1.36]</td>
<td>0.55[0.17,1.71]</td>
<td></td>
</tr>
</tbody>
</table>

eTable 3e. Odds ratio for sensitivity analysis for grade 3 or 4 Intraventricular Haemorrhage

eTable 3 (a-e) above shows the odds ratio for the network and direct comparisons for each outcome in the sensitivity analysis. Network meta-analysis comparisons are below the greyed line, direct comparisons are above the line. Comparisons that did not reach statistical significance (credibility intervals for the odds ratio cross 1) are highlighted in yellow. Comparisons that do reach statistical significance are highlighted in blue. Most conservative model of analysis was used in each case.

*denotes fixed-effect model, # denotes random effect model for the direct comparison, & denotes only one study in comparison leading to use of the random effects model, ^ denotes zero events in at least one arm of one study leading to use of the fixed effect model.
eTable 4. Models used for outcomes for sensitivity analysis

<table>
<thead>
<tr>
<th>Outcome</th>
<th>DIC – Fixed</th>
<th>DIC – Random</th>
<th>Model Used</th>
<th>SD</th>
<th>95% CrI</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>74.72</td>
<td>76.47</td>
<td>Fixed</td>
<td>9.52</td>
<td>1.12, 4.92</td>
<td>11.72</td>
</tr>
<tr>
<td>BPD</td>
<td>76.01</td>
<td>76.54</td>
<td>Fixed</td>
<td>0.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>75.86</td>
<td>63.82</td>
<td>Random</td>
<td>3.424</td>
<td>1.22, 4.92</td>
<td>11.72</td>
</tr>
<tr>
<td>Major Morbidity</td>
<td>89.54</td>
<td>89.58</td>
<td>Fixed</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3/4 IVH</td>
<td>66.33</td>
<td>67.54</td>
<td>Fixed</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SD – between study standard deviation, CrI – Credible interval, BPD – bronchopulmonary dysplasia, IVH – intraventricular haemorrhage
eResults – Secondary Outcomes

1. Bronchopulmonary Dysplasia
Network meta-analysis was performed using a fixed-effects model as it was more conservative. DIC for the fixed-effect model was 91.45, random-effect model 92.9. Model used for the direct comparisons along with odds ratio for each comparison, both network and direct are shown in eTable 3a.

<table>
<thead>
<tr>
<th>Bronchopulmonary Dysplasia</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>1.4[0.87,2.23] &</td>
<td>0.77[0.37,1.61] *</td>
<td>0.93[0.74,1.16] *</td>
<td>1.02[0.71,1.45] *</td>
<td></td>
</tr>
<tr>
<td>Threshold 30%</td>
<td>1.39[0.87,2.24]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>0.77[0.37,1.58]</td>
<td>0.55[0.23,1.30]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 50%</td>
<td>0.93[0.74,1.16]</td>
<td>0.66[0.39,1.12]</td>
<td>1.20[0.57,2.61]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 60%</td>
<td>1.02[0.72,1.45]</td>
<td>0.73[0.40,1.32]</td>
<td>1.32[0.60,3.01]</td>
<td>1.10[0.72,1.67]</td>
<td></td>
</tr>
</tbody>
</table>

eTable 5a. Odds ratio for both the direct and network comparison for the outcome bronchopulmonary dysplasia.
Network meta-analysis comparisons are below the greyed line, direct comparisons are above the line.
Comparisons that did not reach statistical significance (credibility intervals for the odds ratio cross 1) are highlighted in yellow. Comparisons that do reach statistical significance are highlighted in blue.
Most conservative method of analysis was used in each case.
& denotes fixed effect model, # denotes random effect model for direct comparisons, & denotes only one study in comparison with no convergence of random effect model – fixed effect used, ^ denotes zero events in one arm of one study leading to use of the fixed effect model

2. Chronic Lung Disease
Network meta-analysis was performed using a random-effects model, as the most conservative model.
DIC for the fixed-effect model was 109, random-effect model 110.7. Median between-study standard deviation 0.1751 (95% CrI 0.0078, 0.8729), variance 0.031. Models used in the direct comparisons with odds ratio for each comparison are shown in table 3.

<table>
<thead>
<tr>
<th>Chronic Lung Disease</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>1.47[0.07,30.69] #</td>
<td>1.07[0.81,1.43] *</td>
<td>3.97[0.88,30.78] &</td>
<td>0.6[0.33,1.06] *</td>
<td></td>
</tr>
<tr>
<td>Threshold 30%</td>
<td>1.48[0.82,2.63]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>1.05[0.63,1.64]</td>
<td>0.71[0.32,1.48]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Bronchopulmonary Dysplasia or Chronic Lung Disease at maximal follow up
For this outcome, a random-effect model was used for the network meta-analysis as the more conservative choice.
DIC for the fixed model was 152.9, random model 154.7. Median between study deviation 0.1619 (95% CrI 0.0071, 0.678), variance 0.26.
Models used in the direct comparisons along with odds ratio for each comparison are shown in eTable 3c.

<table>
<thead>
<tr>
<th>CLD or BPD</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>1.45[1.09,1.93] *</td>
<td>0.94[0.68,1.29] ^</td>
<td>0.93[0.74,1.16] ^</td>
<td>0.91[0.65,1.26] *</td>
<td></td>
</tr>
<tr>
<td>Threshold 30%</td>
<td>1.45[0.95,2.21]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>0.91[0.54,1.41]</td>
<td>0.63[0.32,1.13]</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 50%</td>
<td>0.96[0.59,2.00]</td>
<td>0.66[0.36,1.58]</td>
<td>1.06[0.57,2.75]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 60%</td>
<td>0.86[0.47,1.34]</td>
<td>0.59[0.28,1.06]</td>
<td>0.94[0.46,1.81]</td>
<td>0.90[0.32,1.64]</td>
<td></td>
</tr>
</tbody>
</table>

eTable 3c. Odds ratio for the comparisons of both the direct and network comparisons for CLD or BPD. Description of table as per eTable 3a

4. Pneumothorax (or other air-leak)
Network meta-analysis was performed using a random-effects model, as the most conservative model.
DIC for the fixed-effect model was 159.5, random-effect model was 154.3. Between study standard deviation was 0.859 (95% CrI 0.197, 2.115), variance 0.74.
Models used in the direct comparisons along with odds ratio for each comparison are shown in eTable 3d.

<table>
<thead>
<tr>
<th>Pneumothorax</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>2.36[0.29,22.15] #</td>
<td>1.38[0.89,2.17] *</td>
<td>0.92[0.63,1.35] *</td>
<td>1.67[0.88,3.19] *</td>
<td></td>
</tr>
<tr>
<td>Threshold 30%</td>
<td>2.41[0.61,10.48]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>1.26[0.42,3.97]</td>
<td>0.52[0.08,3.13]</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 50%</td>
<td>0.81[0.19,3.47]</td>
<td>0.33[0.04,2.49]</td>
<td>0.64[0.10,3.99]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 60%</td>
<td>2.05[0.50,10.72]</td>
<td>0.85[0.11,7.42]</td>
<td>1.62[0.27,12.07]</td>
<td>2.54[0.35,23.13]</td>
<td></td>
</tr>
</tbody>
</table>

eTable 3d. Odds ratio for the comparisons of both the direct and network comparisons for pneumothorax. Description of table as per eTable 3a
5. Surfactant Treatment (proportion requiring surfactant)
Network meta-analysis not performed.
Proportions receiving surfactant (binary): 99.07% of the prophylaxis group received any surfactant
41.54% in the 30% group
53.82% in the 40% group
64.42% in the 50% group
46.22% of 60% group.

6. Number of Surfactant Doses Required
Network meta-analysis was performed using a random-effects model, as the most conservative model.
DIC for the fixed-effect model was 270, random-effect model 269. Between study standard deviation 2.504 (95% CrI 0.1212, 4.879), variance 6.27.
Models used in the direct comparisons along with odds ratio for each comparison are shown in eTable 3f.

<table>
<thead>
<tr>
<th>Surfactant - Number of Doses</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>0.51[0.46,0.56] *</td>
<td>0.71[0.63,0.8] *</td>
<td>0.65[0.58,0.73] *</td>
<td>0.26[0.21,0.32] *</td>
<td></td>
</tr>
<tr>
<td>Threshold 30%</td>
<td>0.51[0.46,0.56]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>0.71[0.63,0.81]</td>
<td>1.41[1.20,1.65]</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 50%</td>
<td>0.65[0.58,0.73]</td>
<td>1.29[1.10,1.51]</td>
<td>0.91[0.77,1.08]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 60%</td>
<td>0.26[0.21,0.32]</td>
<td>0.52[0.41,0.65]</td>
<td>0.37[0.29,0.47]</td>
<td>0.40[0.32,0.51]</td>
<td></td>
</tr>
</tbody>
</table>

eTable 5e. Odds ratio for the comparisons of both the direct and network comparisons for number of surfactant doses required. Description of table as per eTable 3a

7. Total Number of Major Morbidities
Network meta-analysis was performed using a fixed-effects model, as the most conservative model. DIC for the fixed-effect model was 168.5, random-effect model 168.5.
Models used in the direct comparisons along with odds ratio for each comparison are shown in eTable 3g.

<table>
<thead>
<tr>
<th>Major Morbidity</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>1.14[0.93,1.4] *</td>
<td>1.18[0.89,1.56] *</td>
<td>1.04[0.92,1.18] *</td>
<td>1.02[0.81,1.28] *</td>
<td></td>
</tr>
<tr>
<td>Threshold 30%</td>
<td>1.14[0.94,1.40]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>1.18[0.89,1.56]</td>
<td>1.03[0.73,1.45]</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 50%</td>
<td>1.04[0.92,1.18]</td>
<td>0.91[0.72,1.16]</td>
<td>0.89[0.65,1.20]</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
8. Grade 3 or 4 Intraventricular Haemorrhage

Network meta-analysis was performed using a random-effects model, as the most conservative model. DIC for the fixed-effect model was 138.3, random-effect model 137.8. Between study standard deviation 0.449 (95% CrI 0.326, 1.281), variance 0.2. Models used in the direct comparisons along with odds ratio for each comparison are shown in eTable 3h.

<table>
<thead>
<tr>
<th>Grade 3 or 4 Intraventricular Haemorrhage</th>
<th>Prophylaxis</th>
<th>Threshold 0.3</th>
<th>Threshold 0.4</th>
<th>Threshold 0.5</th>
<th>Threshold 0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td></td>
<td>2.16[0.14,34.19]</td>
<td>1.59[0.91,2.84] *</td>
<td>1.21[0.9,1.63] *</td>
<td>0.67[0.32,1.32] *</td>
</tr>
<tr>
<td>Threshold 0.3</td>
<td>2.01[0.83,5.46]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 0.4</td>
<td>1.69[0.77,4.10]</td>
<td>0.84[0.24,2.93]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 0.5</td>
<td>1.11[0.44,2.47]</td>
<td>0.55[0.14,1.75]</td>
<td>0.65[0.18,1.94]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 0.6</td>
<td>0.68[0.22,2.03]</td>
<td>0.34[0.07,1.35]</td>
<td>0.40[0.09,1.52]</td>
<td>0.61[0.16,2.60]</td>
<td></td>
</tr>
</tbody>
</table>

eTable 5g. Odds ratio for the comparisons of both the direct and network comparisons for grade 3 or 4 intraventricular haemorrhage. Description of table as per eTable 3a

9. Periventricular Leukomalacia

Network meta-analysis was performed using a fixed-effect model, as the most conservative model. DIC for the fixed-effect model was 78.82, random-effect model 80.17. Models used in the direct comparisons along with odds ratio for each comparison are shown in eTable 3i.

<table>
<thead>
<tr>
<th>Periventricular Leukomalacia</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td></td>
<td>0.81[0.51,1.28] *</td>
<td>0.63[0.07,4.18] *</td>
<td>0.81[0.22,2.77] *</td>
<td>0.58[0.2,1.5] *</td>
</tr>
<tr>
<td>Threshold 30%</td>
<td>0.81[0.51,1.28]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>0.64[0.07,4.25]</td>
<td>0.79[0.09,5.53]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 50%</td>
<td>0.80[0.21,2.81]</td>
<td>0.98[0.25,3.79]</td>
<td>1.26[0.13,14.92]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 60%</td>
<td>0.58[0.19,1.50]</td>
<td>0.71[0.22,2.06]</td>
<td>0.91[0.10,9.56]</td>
<td>0.72[0.14,3.64]</td>
<td></td>
</tr>
</tbody>
</table>

eTable 5h. Odds ratio for the comparisons of both the direct and network comparisons for periventricular leukomalacia. Description of table as per eTable 3a
10. Necrotising Enterocolitis
Network meta-analysis was performed using a fixed-effects model, as the most conservative model. DIC for the fixed-effect model was 112.5, random-effect model 114.4. Models used in the direct comparisons along with odds ratio for each comparison are shown in eTable 3j.

<table>
<thead>
<tr>
<th>Necrotising Enterocolitis</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>0.86[0.54,1.36] *</td>
<td>1.27[0.81,1.77] *</td>
<td>1.15[0.61,2.08] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 30%</td>
<td>1.27[0.81,1.77] *</td>
<td>1.27[0.92,1.77] *</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>1.27[0.81,1.77] *</td>
<td>1.27[0.81,1.77] *</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 50%</td>
<td>1.27[0.81,1.77] *</td>
<td>1.27[0.81,1.77] *</td>
<td>1.27[0.92,1.77] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold 60%</td>
<td>1.27[0.81,1.77] *</td>
<td>1.27[0.81,1.77] *</td>
<td>1.27[0.92,1.77] *</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.27[0.81,1.77] *</td>
<td>1.27[0.81,1.77] *</td>
<td>1.27[0.92,1.77] *</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Retinopathy of Prematurity
Network meta-analysis was performed using a random-effects model, as the most conservative model. DIC for the fixed-effect model was 65.68, random-effect model 67.53. Between study standard deviation 0.517 (95% CrI 0.0198, 3.845), variance 0.27. Models used in the direct comparisons along with odds ratio for each comparison are shown in eTable 3k.

<table>
<thead>
<tr>
<th>Retinopathy of Prematurity > Stage 2</th>
<th>Prophylaxis</th>
<th>Threshold 30%</th>
<th>Threshold 40%</th>
<th>Threshold 50%</th>
<th>Threshold 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis</td>
<td>1.00[0.03,37.98] *</td>
<td>0.9[0.34,2.31] *</td>
<td>1.01[0.72,1.41] *</td>
<td>2.35[1.02,5.42] *</td>
<td></td>
</tr>
<tr>
<td>Threshold 30%</td>
<td>1.01[0.01,96.83]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 40%</td>
<td>0.87[0.09,7.05]</td>
<td>0.96[0.70,5.42]</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 50%</td>
<td>0.98[0.12,6.96]</td>
<td>0.97[0.12,6.96]</td>
<td>1.14[0.06,23.17]</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Threshold 60%</td>
<td>2.36[0.13,40.29]</td>
<td>2.38[0.14,46.98]</td>
<td>2.69[0.07,101.80]</td>
<td>2.38[0.07,76.63]</td>
<td></td>
</tr>
</tbody>
</table>

* Odds ratio for the comparisons of both the direct and network comparisons for necrotising enterocolitis. Description of table as per eTable 3a

** Odds ratio for the comparisons of both the direct and network comparisons for retinopathy of prematurity greater than stage 2. Description of table as per eTable 3a
References

doi:http://dx.doi.org/10.1136/jim-d-15-00013.268

doi:10.1016/j.pedneo.2015.03.007

27. Lefort S, Diniz EMA, Vaz FAC (1999) A follow-up clinical trial involving preterm neonates at risk for Respiratory Distress Syndrome (RDS), submitted to prophylactic surfactant of porcine origin comparing two different dosage regimens. 4th World Congress of Perinatal Medicine, Medimond S R L, 40128 Bologna

49. Chile PUCd, Pediatría SCh (2006) Two Strategies of RDS Treatment in Newborns With Birth Weight > 1500 Grams. https://ClinicalTrials.gov/show/NCT00277030,
50. China Medical University C, Hospital NTU, Hospital TMU, Hospital CG, Hospital CGM (2009) Prevention of Chronic Lung Disease (CLD) in Preterm Infants. https://ClinicalTrials.gov/show/NCT00883532,
51. Cologne Uo, Schleswig-Holstein Uo, Hospital ACs, Bochum RUo, Datteln VUo, Leverkusen Ho, Kliniken der Stadt Koeln KR, Heinrich-Heine University D, Aschaffenburg-Alzenua K, GmbH AKH, Stuttgart K, Siegen DK, University Hospital B, Charite University B, Germany, Cologne TCTC, Education GFMo, Research (2009) Surfactant Application During Spontaneous Breathing With Continuous Positive Airway Pressure (CPAP) in Premature Infants < 27 Weeks. https://ClinicalTrials.gov/show/NCT00751959,
52. CTRI/2008/091/000234 (2009) Early Surfactant Therapy to prevent need for ventilation for preterm infants(gestation &lt;34weeks)on Bubble CPAP. (trans: No sponsor N),
53. CTRI/2015/07/005968 (2015) Exogenous surfactant obtained from goat lungs for treating respiratory difficulty due to lack of surfactant in preterm neonates (trans: All India Institute of Medical Sciences New Delhi Y),

62. Hospital D, University tRloSotTMM (2016) Surfactant Administration in Preterm Infants. https://ClinicalTrials.gov/show/NCT02821273,

64. Institute OHR (2013) A Multi-center Trial to Determine if Curosurf® Reduces the Duration of Mechanical Ventilation in Very Preterm Infants. https://ClinicalTrials.gov/show/NCT01709409,

73. Manitoba Uo (2012) Early CPAP And Large Volume Minimally Invasive Surfactant (ECALMIST) in Preterm Infants With RDS. https://ClinicalTrials.gov/show/NCT01553292,

