One-year outcomes following surgery for necrotising enterocolitis: a UK-wide cohort study

Benjamin Saul Raywood Allin,1,2 Anna-May Long,1,2 Amit Gupta,3 Kokila Lakhoo,2 Marian Knight,1 The British Association of Paediatric Surgeons Congenital Anomalies Surveillance System Necrotising Enterocolitis Collaboration

ABSTRACT

Objective The objective was to describe outcomes and investigate factors affecting prognosis at 1 year post intervention for infants with surgical necrotising enterocolitis (NEC).

Design Using the British Association of Paediatric Surgeons Congenital Anomalies Surveillance System, we conducted a prospective, multicentre cohort study of every infant reported to require surgical intervention for NEC in the UK and Ireland between 1 March 2013 and 28 February 2014. Association of independent variables with 1-year mortality was investigated using multivariable logistic regression analysis.

Setting All 28 paediatric surgical centres in the UK and Ireland.

Patients Infants were eligible for inclusion if they were diagnosed with NEC and deemed to require surgical intervention, regardless of whether that intervention was delivered.

Outcomes Primary outcome was mortality within 1 year of the decision to intervene surgically.

Results 236 infants were included in the study. 208 (88%) infants had 1-year follow-up. 59 of the 203 infants with known survival status (29%, 95% CI 23% to 36%) died within 1 year of the decision to intervene surgically. Following adjustment, key factors associated with reduced 1-year mortality included older gestational age at birth (adjusted OR (aOR) 0.87, 95% CI 0.78 to 0.96), small for gestational age (SGA) (aOR 3.6, 95% CI 1.4 to 9.5) and requiring parenteral nutrition at 28 days post-decision to intervene surgically (aOR 3.5, 95% CI 1.1 to 11.03) were associated with increased 1-year mortality.

Conclusions Parents of infants undergoing surgery for NEC should be counselled that there is approximately a 1:3 risk of death in the first post-operative year but that the risk is lower for infants who are of greater gestational age at birth, who are not SGA and who do not require parenteral nutrition at 28 days post-intervention.

BACKGROUND

Necrotising enterocolitis (NEC) affects approximately 1 per 1000 live-born infants,1 with approximately one in four infants with NEC undergoing surgical intervention.2 NEC thus represents one of the major neonatal gastrointestinal emergencies and is a significant contributor to rates of neonatal mortality.3 4 A constant message from the parent and patient group advising our research programme is that the advice and counselling they receive varies significantly dependent on the clinician they are talking to or the hospital they visit. Such variation in advice is a cause of great distress, and it is likely that this variation occurs due to a lack of relevant, nuanced, large-scale data on which to base parental counselling.5

The aim of this prospective nationwide cohort study was therefore to provide detailed information relating to outcomes in the first postoperative year and factors that affect prognosis that could subsequently form a resource from which to counsel parents of children undergoing surgical intervention for NEC. Outcomes within the first 28 postoperative days have been previously published elsewhere.2

METHODS

Study design

Using the British Association of Paediatric Surgeons Congenital Anomalies Surveillance System, we conducted a prospective, multicentre cohort study of every infant reported to require surgical intervention for NEC in the UK and Ireland between 1 March 2013 and 28 February 2014.

What is already known on this topic?

► Five per 1000 infants admitted to neonatal units are diagnosed with necrotising enterocolitis (NEC), and one in four of those infants require surgical intervention.

► Surgical NEC is a major cause of early morbidity and mortality.

► More nuanced data are required from high-quality studies to allow accurate counselling of parents of infants with NEC.

What this study adds?

► Approximately one in three infants with NEC die within the first postoperative year, and 6 in 10 require at least one additional operation.

► Older gestational age at birth, older age at presentation with symptoms of NEC and more limited disease are associated with lower odds of 1-year mortality.

► Being small for gestational age, requiring inotropes at time of surgical intervention and requiring parenteral nutrition at 28 days post-decision to intervene surgically are associated with a raised odds of 1-year mortality.
Cases were identified via monthly reporting cards sent to lead clinicians at all 28 paediatric surgical centres in the UK and Ireland, with detailed data collection forms completed in response to notification of a case and again 1 year later. Data handling was as described in previous publications.

Case definition and subgroup analysis

Infants were eligible for inclusion in the study if they were deemed to require surgical intervention for NEC, regardless of whether that intervention was actually delivered. NEC could be diagnosed in three different ways dependent on the pathway an infant followed:

1. Clinically using the Vermont Oxford Network Criteria for infants where necessity for surgical intervention was confirmed but no laparotomy or postmortem undertaken to allow confirmation of NEC on visual inspection of the bowel.
2. At the time of postmortem (when undertaken), for infants where surgical intervention was deemed necessary for a presumptive diagnosis of NEC but no laparotomy was performed to allow confirmation of NEC on visual inspection of the bowel.
3. On visual inspection of the bowel at time of laparotomy.

Surgical intervention refers to both laparotomy and primary peritoneal drainage and is used in this manner throughout the manuscript.

Infants who at the time of laparotomy were deemed to have a cause for their symptoms other than NEC were excluded from the analysis. However, because there is evidence to suggest that the differences in presentation between SIP and NEC are too small to allow reliable differentiation prelaparotomy and there is existing evidence of an association between mortality and both gestational age and being small for gestational age, an a priori decision was therefore made to include both of these variables in the model, regardless of the statistical significance of their association with mortality. Small for gestational age was defined as a birth weight of <10th centile for gestational age, with centiles calculated from the infant’s birth weight z-score.

Outcomes

Our primary outcome of interest was mortality within 1 year of the decision to intervene surgically. Secondary outcomes included further surgical intervention and discharge home in the first year after the decision to intervene surgically and parenteral nutrition use, intestinal failure associated liver disease (IFALD) and liver transplant at 1 year post-decision to intervene surgically. IFALD is defined as per the 2009 review of current management practices in IFALD conducted by the British Society of Paediatric Gastroenterology, Hepatology and Nutrition and previously used by Bishay et al:

- Type 1 (early) IFALD — persistent elevation of alkaline phosphatase for 6 weeks or longer.
- Type 2 (established) — additional elevated total bilirubin (>50 μmol/L).
- Type 3 (late) — additional clinical signs of end-stage liver disease.

Mortality estimates

Actual mortality rates were calculated based on the returned data. Minimum/maximum estimates of mortality were calculated on the assumption that all infants who were lost to follow-up had survived/died, respectively.

In order to allow a more direct comparison with the Vermont Oxford Network studies, which only include infants with a birth weight of less than 1500g, a subgroup analysis of this cohort was undertaken.

Statistical analysis

Rates for each of the primary and secondary outcome measures were calculated based on the number of infants with information returned for that variable.

ORs and 95% CIs were calculated for independent variables considered likely to have an impact on mortality at 1 year post-decision to intervene surgically (online supplementary information 1). Two multivariable logistic regression analysis models were then developed. The first was designed to investigate the association of key preoperative factors with 1-year mortality, while the second was designed to assess the association of operative findings and early markers of morbidity with 1-year mortality. There is existing evidence of an association between mortality and both gestational age and being small for gestational age.

The second multivariable model was developed using the first as a base, with operative findings and markers of early postoperative morbidity assessed for inclusion in the model in addition to those retained in the preoperative model. Because of existing evidence that infants diagnosed with SIP at the time of laparotomy may have different outcomes to those with NEC, an a priori decision was made to include definitive diagnosis of SIP in the model regardless of its association with 1-year mortality on univariable analysis. Other operative findings and markers of early postoperative morbidity were assessed for inclusion in the model in the same manner as independent variables in the preoperative model. Complete case analysis was used in both models.

RESULTS

Follow-up and demographics

Two hundred and thirty-six infants were included in the study, with 1-year follow-up information obtained for 208 (88%). Thirty-two infants with complete follow-up (16%) and none who were lost to follow-up had a definitive diagnosis of SIP (p = 0.02). There were no other statistically significant differences between infants with and without follow-up (table 1).

Mortality

Fifty-nine (29%) of the 203 infants with a known 1-year survival status had died within a year of the decision to intervene...
surgically. Minimum and maximum estimates of mortality are 25% and 39%, respectively (table 2). Of the 59 infants who died, 43 (73%) did so prior to 28 days post-decision to intervene surgically and 16 (27%) between 28 days and 1 year post-decision to intervene surgically. The median time (IQR) from decision to intervene surgically until death was 8 days (1–44 days).

Of the 163 infants with known 1-year survival status and a birth weight of <1500 g, 50 (31%) had died prior to 1 year. Minimum estimated mortality was 26% and maximum estimated mortality was 40% (table 2 and table 3).

Cause of death
The causes of death of infants prior to 28 days post-decision to intervene surgically have been previously reported.2 Of the 16 infants who died between 28 days and 1 year post-decision to intervene surgically, seven (43%) died as a direct result of NEC, three (19%) died as a result of extreme prematurity, one (6%) died from multiorgan failure, one (6%) died from circulatory collapse of unknown cause, one (6%) died as a result of massive intracerebral haemorrhage, one (6%) died from liver failure and two (13%) had unknown causes of death.

Further surgical intervention
Of the 196 infants with 1-year follow-up and information recorded, there were 68 infants (35%) who had one further procedure, 31 infants (16%) who had two further procedures and 19 infants (10%) who had three or more further procedures. Forty-six infants in the cohort (23%) were confirmed to

Table 1 Baseline demographics and predictors of 1-year mortality in infants with complete follow-up and infants lost to follow-up

<table>
<thead>
<tr>
<th>Baseline characteristic*</th>
<th>Infants lost to follow-up n (%)</th>
<th>Infants with 1-year follow-up n (%)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White British</td>
<td>11 (42%)</td>
<td>114 (59%)</td>
<td>0.10</td>
</tr>
<tr>
<td>Other</td>
<td>15 (58%)</td>
<td>78 (41%)</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>16 (57%)</td>
<td>129 (62%)</td>
<td>0.62</td>
</tr>
<tr>
<td>Female</td>
<td>12 (43%)</td>
<td>79 (38%)</td>
<td></td>
</tr>
<tr>
<td>Median (IQR) gestational age at birth (completed weeks)</td>
<td>27 (26–33)</td>
<td>26 (25–30)</td>
<td>0.12</td>
</tr>
<tr>
<td>Median (IQR) birth weight (grams)</td>
<td>1013 (657–1165)</td>
<td>907 (720–1310)</td>
<td>0.15</td>
</tr>
<tr>
<td>Small for gestational age (<10th centile)</td>
<td>Yes</td>
<td>6 (22%)</td>
<td>30 (15%)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>21 (78%)</td>
<td>176 (85%)</td>
</tr>
<tr>
<td>Ligation of PDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>3 (11%)</td>
<td>15 (7%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>24 (89%)</td>
<td>192 (93%)</td>
</tr>
<tr>
<td>Non-cardiac congenital anomaly</td>
<td>Yes</td>
<td>3 (11%)</td>
<td>23 (11%)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>24 (89%)</td>
<td>184 (89%)</td>
</tr>
<tr>
<td>Abdominal wall erythema or discolouration at presentation</td>
<td>Yes</td>
<td>7 (25%)</td>
<td>65 (31%)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>21 (75%)</td>
<td>143 (69%)</td>
</tr>
<tr>
<td>Operative diagnosis of SIP†</td>
<td>Yes</td>
<td>0 (0%)</td>
<td>32 (16%)</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>27 (100%)</td>
<td>162 (84%)</td>
</tr>
<tr>
<td>Surgical procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resection and primary anastomosis</td>
<td>5 (19%)</td>
<td>35 (17%)</td>
<td>0.83</td>
</tr>
<tr>
<td>Resection and stoma formation</td>
<td>16 (62%)</td>
<td>105 (51%)</td>
<td></td>
</tr>
<tr>
<td>Stoma without resection</td>
<td>4 (15%)</td>
<td>34 (16%)</td>
<td></td>
</tr>
<tr>
<td>Clip and drop with resection</td>
<td>1 (4%)</td>
<td>9 (4%)</td>
<td></td>
</tr>
<tr>
<td>Open and close laparotomy</td>
<td>0</td>
<td>10 (5%)</td>
<td></td>
</tr>
<tr>
<td>Negative laparotomy</td>
<td>0</td>
<td>2 (1%)</td>
<td></td>
</tr>
<tr>
<td>Drain only</td>
<td>0</td>
<td>6 (3%)</td>
<td></td>
</tr>
<tr>
<td>No surgical intervention</td>
<td>0</td>
<td>6 (3%)</td>
<td></td>
</tr>
</tbody>
</table>

*Complete data were not obtained for all characteristics for all infants, and therefore numbers and percentages presented, including for surgical procedure, are based on the number of infants with data returned for that characteristic.
†Diagnosis was not possible for 12 infants who did not undergo laparotomy and was unknown in three despite undergoing a laparotomy.
PDA, patent ductus arteriosis; SIP, spontaneous intestinal perforation

Table 2 Mortality rates

<table>
<thead>
<tr>
<th>Number of infants</th>
<th>Survival status at 1 year post-decision to intervene surgically</th>
<th>One-year mortality rates</th>
<th>Estimate of min to max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unknown n (%)</td>
<td>Died n (%)</td>
<td>Survived n (%)</td>
</tr>
<tr>
<td>Entire cohort</td>
<td>236</td>
<td>59 (25%)</td>
<td>144 (61%)</td>
</tr>
<tr>
<td>Confirmed NEC*</td>
<td>189</td>
<td>41 (22%)</td>
<td>118 (62%)</td>
</tr>
<tr>
<td>Confirmed SIP*</td>
<td>32</td>
<td>11 (34%)</td>
<td>21 (66%)</td>
</tr>
<tr>
<td>Laparotomy performed but unknown final diagnosis*</td>
<td>3</td>
<td>2 (66%)</td>
<td>0</td>
</tr>
<tr>
<td>No laparotomy performed</td>
<td>12</td>
<td>7 (58%)</td>
<td>4 (33%)</td>
</tr>
<tr>
<td>Infants ≤1500 g</td>
<td>189</td>
<td>50 (26%)</td>
<td>113 (60%)</td>
</tr>
</tbody>
</table>

*Data only available for the 224 infants who underwent laparotomy.
NEC, necrotising enterocolitis.
have undergone at least one further laparotomy (table 4). At the
time of laparotomy, 24 infants (13%) had a further resection for
active NEC, while 17 infants (9%) underwent formation of a
new stoma. The most common additional procedure overall,
however, was stoma closure, which was undertaken in 83 infants
(42%). Sixty-six stoma closures (80%) were performed elec-
tively in order to restore gut continuity, and these were performed at a
median of 98 days post initial surgical intervention (IQR 52–148
days). There were a further 12 infants (15%) who had their
stoma closed due to high output, and three (4%) in whom stoma
closure was deemed more appropriate than stoma revision. The
indication for stoma closure in two infants (1%) was unknown.
Other common additional procedures included vascular access
(21 infants, 10%), line removal (8 infants, 4%) and inguinal
herniotomy (11 infants, 5%).

Intestinal and hepatic function

Of the 144 infants who were known to be alive at 1 year post-de-
cision to intervene, 126 (88%) were confirmed to have been
discharged home, while three (2%) remained as inpatients.
Discharge status was unknown in 15 (10%) (table 4).

Preoperative factors associated with 1-year mortality

The following variables were assessed for inclusion in the multi-
variable model due to the statistical significance of their associ-
ation with mortality on univariable analysis (p≤0.1): ethnicity,
non-cardiac congenital anomaly, abdominal wall erythema or
discouluration at presentation, inotropes at presentation,
inotropes required at time of surgical intervention, ventilated
at presentation, ventilated at time of surgical intervention,
age at presentation to the treating hospital with first symptoms
of NEC, at least one region of colon unaffected by NEC and
need for parenteral nutrition at 28 days post-decision to inter-
vene surgically. Results of the univariable analysis can be found
in online supplementary table S1.

Following adjustment for factors retained in the preoperative
multivariable model (table 5), increasing gestational age at birth
(adjusted OR (aOR) 0.87, 95% CI 0.78 to 0.96, p=0.007) and
increasing age at presentation to the treating hospital with first
symptoms of NEC (aOR 0.97, 95% CI 0.95 to 0.99, p=0.007),
were significantly associated with a lower odds of 1-year
mortality. Being small for gestational age at birth (aOR 3.6,
95% CI 1.4 to 9.5, p=0.008), requiring inotropes at the time
of surgical intervention (aOR 2.7, 95% CI 1.3 to 5.5, p=0.006) and
a diagnosis of a non-cardiac congenital anomaly (aOR 6.2,
95% CI 1.8 to 21.4, p=0.004) were all associated with a raised
odds of 1-year mortality.
burden of disease associated with surgical NEC on a national basis. By capturing robust information relating to risk factors, operative technique and both early and late outcomes from a national cohort of infants, the results of this study can be used for accurate benchmarking of outcomes and counselling of parents. This study is, however, open to the limitations of all observational studies, including confounding from unmeasured variables. More specific limitations include the fact that the threshold for surgical intervention will vary in different centres and that different clinicians will have different thresholds for starting and stopping parenteral nutrition, enteral feeds and inotropes. Such variation in practice combined with the relatively limited numbers in the study, despite its nationwide design, mean that we may have failed to identify associations between important independent variables and 1-year mortality.

The largest existing studies of infants with NEC are those from the Vermont Oxford Network based in the USA. In these studies, a mortality rate of 35% has been reported for infants with surgically managed NEC with a birth weight of less than 1500g.15 When our study is limited to infants with a birth weight of less than 1500g, a mortality rate of 31% is seen,16 which is not statistically significantly different from the 35% reported by the Vermont Oxford Network. Battersby et al.11 have recently reported results from an English cohort study investigating incidence and feeding antecedents of severe NEC. In this, they report 139 deaths (33%) among 423 infants with laparotomy-confirmed NEC. There is some overlap in the time period and geographical region of data collection between their study and ours, and the similar incidences of laparotomy confirmed NEC, and lack of a statistically significant difference in mortality rates between the two studies (p=0.1), despite the different study designs, adds reassurance to the robustness of the data presented.

This study provides information to improve the counselling of parents of infants who undergo surgical intervention for NEC. It is important to convey to parents that despite there being approximately a one in three chances of death in the first postoperative year for infants requiring surgical intervention for NEC in the UK, the risk is reduced in infants with a greater gestational age at birth, those whose birth weight is above the 10th centile for their gestational age and those who are older at presentation with symptoms of NEC. Data from the study can also be used to counsel parents that 50% of deaths occur in the first 8 days postoperatively and that if their child survives to 28 days post-decision to intervene surgically and is no longer requiring parenteral nutrition that they have a very good chance of survival to 1 year post-decision to intervene surgically. As well as conveying information related to mortality, parents can be told that nearly two-thirds of infants will require at least one further operation in the first year and that IFALD and parenteral nutrition dependence occur in roughly 1 in 10 infants who are alive at 1 year post-decision to intervene surgically.

We believe that the identified association of 28-day parenteral nutrition requirement and mortality may be due to a combination of three factors. First, that infants who have more severe NEC will be more likely to require parenteral nutrition at 28 days post-decision to intervene surgically than those who are...
more stable and that the increased odds of mortality is due to the underlying disease severity, not the parenteral nutrition requirement. Second, that parenteral nutrition requirement at 28 days post-decision to intervene surgically is a surrogate marker for intestinal failure and that complications resulting from the intestinal failure are responsible for the increased 1-year mortality, and third, that the increased mortality is occurring as a result of complications secondary to long-term parenteral nutrition use. Regardless of the reason for the association, we believe that it is useful in the counselling of parents to have a reliably defined, easily identifiable marker of morbidity that can be used as a framework around which to discuss potential longer term outcomes.

While this work has provided further information that can be used for counselling of parents, it has also highlighted many further questions. Potentially the most important is how to determine the appropriate point to intervene surgically in infants with NEC. This study has provided evidence that those infants who have more extensive disease and are less clinically stable at the time of laparotomy are less likely to survive to 1 year post-decision to intervene surgically. Investigating methods of robustly diagnosing NEC and identifying the need for surgical intervention prior to infants reaching this point of clinical instability is therefore essential in order to improve outcomes. Conducting a large-scale, international, multicentre cohort study would help to build on work by Battesby et al\(^1\) to refine a definition for NEC and identify prognostic factors. Population definition and risk stratification through such a study would lay the groundwork for randomised controlled trials to later compare different methods and timings of surgical intervention. Through work such as this, it would be possible to address the concerns of the National Confidential Enquiry into Patient Outcomes and Death\(^2\) that ‘difficulty in decision making during both medical management and the decision to operate in babies with NEC’ is a key factor in limiting outcomes.

Acknowledgements

We would like to thank the members of the BAPS–CASS NEC collaboration.

Collaborators

Marcin Kazmierski (Addenbrooke’s Hospital), Simon Kenny (Alder Hey Children’s Hospital), Joana Lopes (Birmingham Children’s Hospital), Eleri Cusick (Bristol Royal Hospital for Children), Gillian Parsons (Chelsea and Westminster Hospital), Amanda McCabe (Edinburgh Royal Hospital for Sick Children), Manasvi Upadhyaya (Evelina Children’s Hospital), Gregor Walker (Glasgow Royal Hospital for Sick Children), Paulo De Coppi (Great Ormond Street Hospital for Sick Children), Sania Besarovic (Hull Royal Infirmary), Hemanshoo Thakkar (Oxford Children’s Hospital), Amanda McCabe (Edinburgh Royal Hospital for Sick Children), A-ML, AG, MK and KL were responsible for design of the study along with critical revision of the manuscript. The BAPS–CASS collaboration as described above was responsible for data collection.

Funding

Marian Knight is funded by a National Institute for Health Research (NIHR) Professorship. Benjamin Allin is funded by a National Institute for Health Research (NIHR) Doctoral Research Fellowship. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. The NIHR had no role in design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. BA and MK had full access to the data, and take responsibility for the integrity of the data, and accuracy of the data analysis. MK, as lead author affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Competing interests

None declared.

Ethics approval

Ethical approval for the study was granted by the National Research Ethics Service Committee South Central – Oxford A (Study reference number 12/SC/0416).

Provenance and peer review

Not commissioned; externally peer reviewed.

Data sharing statement

No additional data are available.

Open access

This is an open access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/

REFERENCES