Neonatal airway practices: a telephone survey of all UK level 3 neonatal units

Neonatal airway management (NAM) and oxygenation are vital skills. Unrecognised oesophageal intubation is a common cause of endotracheal intubation (EI) failure and can result in mortality and significant morbidity. The Difficult Airway Society have algorithms for difficult airway management in adults and children including a ‘cannot intubate and cannot ventilate’ (CICV) algorithm. There are no nationally agreed guidelines or algorithms for NAM. The aim of this study is to determine NAM practices in UK level 3 neonatal intensive care units.

Between May and June 2013, a telephone survey of NAM, airway adjuncts and the possession of written NAM policies was undertaken in all UK level 3 neonatal units using a predetermined questionnaire.

All 59 units participated. All units used premedication for elective intubations. Suxamethonium was the most commonly used muscle relaxant along with an analysis for sedation. Overall, 66% used colour-change capnography for endotracheal tube (ETT) placement confirmation. In all, 34% used them at every intubation. A total of 32% only used capnography if there was uncertainty about ETT position (low oxygen saturations and heart rate); 34% of units did not use capnography. In all, 53% limited the number of intubation attempts; two attempts was the most common limit set. Overall, 51% used oropharyngeal airways routinely; 68% had an emergency difficult airway kit, the contents of which varied (table 1). In all, 7% had a documented CICV policy.

This is the first review of UK NAM practices. The variation shown has potential for mismanagement of the neonatal airway. Capnography is standard adult practice and recommended by The Royal College of Anaesthetists and The Difficult Airway Society for every EI. Overall, performance of neonatal EI is poor with success rates being as low as 21%.4–5 Capnography for the confirmation of intubation success in neonates should be standard practice. During cardiac arrest, if exhaled CO₂ is not detected, ETT position should be confirmed using direct laryngoscopy prior to commencing a new intubation attempt. Repeated laryngoscopies should be avoided as they can cause significant trauma to the airway.

Human factors such as stress, poor communication, leadership, team working or inadequacy of equipment can all contribute to a poor outcome in a difficult airway situation. To prevent this, standardisation of practice with evidence based or consensus guidelines is warranted via documented airway management algorithms (suggested CICV algorithm: figure 1) and to avoid the inequality between neonatal and adult and paediatric airway management practices.

T Whitby, D J Lee, C Dewhurst, F Paize
Department of Neonatology, Liverpool Women’s NHS Foundation Trust, Liverpool, UK
Correspondence to Dr Fauzia Paize, Department of Neonatology, Liverpool Women’s NHS Foundation Trust, Crown Street, Liverpool L8 7SS, UK; fauzia.paize@lwh.nhs.uk
Acknowledgements
We would like to thank all those who participated in the survey.
Contributors FP and CD conceived the project. DJL and TW performed the data collection. FP performed data analysis. TW and FP wrote the draft manuscript. All authors reviewed and commented on the final draft of the paper. FP will act as the guarantor of the paper.

Competing interests None.
Provenance and peer review Not commissioned; internally peer reviewed.

Accepted 28 September 2014
Published Online First 23 October 2014

REFERENCES
4 Haubner LY, Barry JS, Johnston LC, et al. Neonatal intubation performance: room for improvement in

Table 1 Neonatal airway management and adjuncts used

<p>|</p>
<table>
<thead>
<tr>
<th>Standard airway</th>
<th>Number of units (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of muscle relaxants for every intubation?</td>
<td>Yes 36 (61%) No 23 (39%)</td>
</tr>
<tr>
<td>Reasons for non-routine use muscle relaxants?</td>
<td>Elective intubation 23 (100%)</td>
</tr>
<tr>
<td>Type of muscle relaxant</td>
<td>Suxamethonium 42 (71%) Atracurium 10 (17%) Vecuronium 4 (7%) Atracurium or pancuronium 2 (3%) Suxamethonium or pancuronium 1 (2%)</td>
</tr>
<tr>
<td>Type of sedation</td>
<td>Analgesia (fentanyl or morphine) 48 (81%) Propofol 6 (10%) Midazolam 5 (9%)</td>
</tr>
<tr>
<td>Limitation of intubation attempts</td>
<td>Exact limit=2 31 (53%) Exact limit=3 30 (51%)</td>
</tr>
<tr>
<td>Oropharyngeal airway use for airway management on neonatal intensive care unit</td>
<td></td>
</tr>
<tr>
<td>ETCO₂</td>
<td>Colour-change ETCO₂ for ETT placement confirmation 39 (66%) Routine use of colour-change ETCO₂ 20 (34%) Non-routine use of colour-change ETCO₂ (used if poor HR/SpO₂ postintubation or lack of confidence in ETT position) 19 (32%)</td>
</tr>
<tr>
<td>Difficult airway</td>
<td>Possession of a difficult airway kit 40 (68%) Possession of a departmental CICV algorithm? 4 (7%) Use of LMA if in CICV scenario 9 (15%)</td>
</tr>
</tbody>
</table>
| CICV, cannot intubate and cannot ventilate; ETCO₂, End tidal carbon dioxide; LMA, laryngeal mask airway; SpO₂, oxygen saturations.

Copyright © 2015 BMJ Publishing Group Ltd. All rights reserved. For permission to reuse any of this content visit http://group.bmj.com/group/rights-licensing/permissions

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Table 1 Neonatal airway management and adjuncts used

<table>
<thead>
<tr>
<th>Standard airway</th>
<th>Number of units (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of muscle relaxants for every intubation?</td>
<td>Yes 36 (61%) No 23 (39%)</td>
</tr>
<tr>
<td>Reasons for non-routine use muscle relaxants?</td>
<td>Elective intubation 23 (100%)</td>
</tr>
<tr>
<td>Type of muscle relaxant</td>
<td>Suxamethonium 42 (71%) Atracurium 10 (17%) Vecuronium 4 (7%) Atracurium or pancuronium 2 (3%) Suxamethonium or pancuronium 1 (2%)</td>
</tr>
<tr>
<td>Type of sedation</td>
<td>Analgesia (fentanyl or morphine) 48 (81%) Propofol 6 (10%) Midazolam 5 (9%)</td>
</tr>
<tr>
<td>Limitation of intubation attempts</td>
<td>Exact limit=2 31 (53%) Exact limit=3 30 (51%)</td>
</tr>
<tr>
<td>Oropharyngeal airway use for airway management on neonatal intensive care unit</td>
<td></td>
</tr>
<tr>
<td>ETCO₂</td>
<td>Colour-change ETCO₂ for ETT placement confirmation 39 (66%) Routine use of colour-change ETCO₂ 20 (34%) Non-routine use of colour-change ETCO₂ (used if poor HR/SpO₂ postintubation or lack of confidence in ETT position) 19 (32%)</td>
</tr>
<tr>
<td>Difficult airway</td>
<td>Possession of a difficult airway kit 40 (68%) Possession of a departmental CICV algorithm? 4 (7%) Use of LMA if in CICV scenario 9 (15%)</td>
</tr>
</tbody>
</table>
| CICV, cannot intubate and cannot ventilate; ETCO₂, End tidal carbon dioxide; LMA, laryngeal mask airway; SpO₂, oxygen saturations.

Copyright © 2015 BMJ Publishing Group Ltd. All rights reserved. For permission to reuse any of this content visit http://group.bmj.com/group/rights-licensing/permissions

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Cannot intubate cannot ventilate (CICV) algorithm in an unconscious neonate

Failed intubation, inadequate ventilation

CALL FOR HELP

Step A: optimise ventilation

- Airway to be managed by most experienced personnel present
- Give 100% oxygen
- Continue facemask IPPV using two person technique
- Ensure no mechanical obstruction
- Optmise head position and chin lift/jaw thrust
- Insert oropharyngeal airway or laryngeal mask airway
- Minimise gastric distension by insertion of orogastric tube and frequent aspiration

Step B: prepare for rescue techniques

- Obtain difficult airway kit
- If rocuronium or vecuronium used consider reversal of paralysis with sugammadex (16mg/kg)

Step C: airway rescue techniques for CICV

To be carried out by ENT / anaesthetist

- CALL FOR HELP: ENT/AAnaesthetist urgently
- Prepare for:
 - Percutaneous cannula cricothyroidotomy
 - Surgical tracheostomy
