Skip to main content
Log in

The Association of Erythromycin and Infantile Hypertrophic Pyloric Stenosis

Causal or Coincidental?

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

The safety profile of erythromycin is notable for the frequent occurrence of intolerable gastrointestinal effects. One of the more serious of these is infantile hypertrophic pyloric stenosis (IHPS). A recent cluster of IHPS cases prompted an epidemiological investigation which identified oral erythromycin chemoprophylaxis of pertussis as the major risk factor. Evidence suggests an association between early postnatal erythromycin exposure and IHPS. There is no substantive evidence of a risk associated with prenatal exposure, with the single published case-control study to date producing negative findings. The epidemiological investigations of the association with early postnatal exposure have reported significantly elevated odds ratios but have a variety of methodological limitations that prevent definitive conclusions being made. Nevertheless, the concordance of findings across studies increases the strength of evidence favouring an association. The prominent gastrokinetic properties of erythromycin have been postulated as the mechanism behind this phenomenon. A comprehensive assessment of this potential adverse effect should consider its biological plausibility in light of known gastrointestinal physiology, its modulation by erythromycin, and the known pathophysiology of IHPS. Gastrointestinal motor activity in the fasted mammal consists of three phases, phase III being large amplitude contractions called migrating motor complexes (MMC) that can be initiated by motilin and erythromycin. The gastrokinetic effects of erythromycin are variable and complex and include effects on the timing, duration, amplitude and distribution of MMCs. It has been speculated that the motilinomimetic effects of erythromycin on antral smooth muscle function, such as the MMC, may mediate the effect via work hypertrophy. Although intuitively plausible and consistent with hypertrophic obstructive changes similar to IHPS observed in hyperplastic rat ileum after artificially induced mechanical obstruction, there is no direct evidence of this phenomenon. Further complicating the association is the limitations of our knowledge about the pathophysiology of IHPS, including numerous genetic abnormalities, increased parietal cell mass, and gastric hyperacidity. The implications of the reported findings with erythromycin on the benefit-risk profiles of newer macrolides and azalides must be considered. The available data on the comparative gastrokinetic properties of macrolides are significant for the potent gastrokinetic properties and its acid degradation products, the marked variation in gastrokinetic properties associated with macrolide ring size, and the requirement for specific glycosidic linkages at the C-3 and C-5 carbons of the macrolide ring. The variation in gastrokinetic properties associated with variations in molecular structure suggests that if the association between erythromycin and IHPS is causal it may not be a class effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahal N, Nahata MC. The new acrolide antibiotics: azithromycin, clarithromycin, dirithromycin, and roxithromycin. Ann Pharmacother 1992; 26: 46–55

    PubMed  CAS  Google Scholar 

  2. Rapp R. Pharmacokinetics and pharmacodynamics of intravenous and oral azithromycin: enhanced tissue activity and minimal drug interactions. Ann Pharmacother 1998; 32: 785–93

    Article  PubMed  CAS  Google Scholar 

  3. American Academy of Pediatrics Red Book 2000: 435–48

  4. Patamasucon P, Kaojarern S, Kusmiesz H. Pharmacokinetics of erythromycin ethylsuccinate and estolate in infants under 4 months of age. Antimicrob Agents Chemother 1981; 19(5): 736–9

    Article  PubMed  CAS  Google Scholar 

  5. Honein MA, Paulozzi LJ, Himelright IM, et al. Infantile hypertrophic pyloric stenosis after pertussis prophylaxis with erythromycin: a case review and cohort study. Lancet 1999 354: 2101–5

    Article  PubMed  CAS  Google Scholar 

  6. Goyal RK, Hirano I. Mechanisms of disease: the enteric nervous system. N Engl J Med 1996; 334(17): 1106–15

    Article  PubMed  CAS  Google Scholar 

  7. Otterson MF, Sarna SK. Gastrointestinal motor effects of erythromycin. Am J Physiol 1990; 259(22): G355–63

    PubMed  CAS  Google Scholar 

  8. Pilot MA, Qin XY. Macrolides and gastrointestinal motility. J Antimicrob Chemother 1988; 22Suppl. B: 201–6

    PubMed  Google Scholar 

  9. Hirst G, David S. Physiology: a calcium window to the gut. Nature 1999; 399(6731): 16–7

    Article  PubMed  CAS  Google Scholar 

  10. Peeters TL. Erythromycin and other macrolides as prokinetic agents. Gastroenterology 1993; 105: 1886–99

    PubMed  CAS  Google Scholar 

  11. Feighner SD, Tan CP, McKee KK. Receptor for motilin identified in the human gastrointestinal system. Science 1999; 284(5423): 2184–8

    Article  PubMed  CAS  Google Scholar 

  12. Khiat A, Boulanger Y. Identification of the motilide pharmacophore using quantitative structure-activity relationships. J. Pept Res 1998; 52(4): 321–8

    Article  PubMed  CAS  Google Scholar 

  13. Haramura M, Tsuzuki K, Okamachi A. Structure-activity of intact porcine motilin. Chem Pharm Bull (Tokyo) 1999; 47(11): 1555–9

    Article  CAS  Google Scholar 

  14. Miller P, Gagnon D, Dickner M. Structure-function studies of motilin analogues. Peptides 1995; 16(1): 11–8

    Article  PubMed  CAS  Google Scholar 

  15. Miller P, Roy A, St-Piere S, et al. Motilin receptors in the human antrum. Am J Physiol 2000; 278(1): 618–23

    Google Scholar 

  16. Lund D, Compton C. Weekly clinicopathological exercises: case 26-1999: a three-week-old girl with pyloric stenosis and an unexpected operative finding. N Engl J Med 1999; 341 (9): 679–84

    Google Scholar 

  17. Yamataka A, Tsukada K, Yokoyama-Laws Y, et al. Pyloromyotomy versus atropine sulfate for infantile hypertrophic pyloric stenosis. J Pediatr Surg 2000; 35(2): 338–41

    Article  PubMed  CAS  Google Scholar 

  18. Schechter R, Torfs CP, Bateson TF. The epidemiology of infantile hypertrophic pyloric stenosis. Paediatr Perinat Epidemiol 1997; 11(4): 407–27

    Article  PubMed  CAS  Google Scholar 

  19. Applegate MS, Druschel CM. The epidemiology of infantile hypertrophic pyloric stenosis in New York State 1983 to 1990. Arch Pediatr Adolesc Med 1995; 149: 1123–9

    Article  PubMed  CAS  Google Scholar 

  20. Stunden RJ, LeQuesne GW, Little KET. The improved ultrasound diagnosis of hypertrophic pyloric stenosis. Pediatr Radiol 1986; 16: 200–5

    Article  PubMed  CAS  Google Scholar 

  21. Hallam D, Hansen B, Bodker B, et al. Pyloric size in normal infants and in infants suspected of having hypertrophic pyloric stenosis. Acta Radiol 1995 36: 261–4

    Article  PubMed  CAS  Google Scholar 

  22. Neilson D, Hollman AS. The ultrasonic diagnosis of infantile hypertrophic pyloric stenosis: technique and accuracy. Clin Radiol 1994; 49: 246–7

    Article  PubMed  CAS  Google Scholar 

  23. Van der Schouw JT, Van der Velden MTW, Hitge-Boetes C, et al. Diagnosis of hypertrophic pyloric stenosis: value of sonography when used in conjunction with clinical findings and laboratory data. Am J Roentgenol 1994; 163: 905–9

    Google Scholar 

  24. Cohen HL, Zinn HL, Haller JO. Ultrasonography of pylorospasm: findings may simulate kypertrophic pyloric stenosis. J Ultrasound Med 1998; 17: 705–11

    PubMed  CAS  Google Scholar 

  25. Lowe LH, Banks WJ, Shyr Y. Pyloric ratio: efficacy in the diagnosis of hypertrophic pyloric stenosis. J Ultrasound Med 1999; 18: 773–7

    PubMed  CAS  Google Scholar 

  26. Hernanz-Schulman M, Sells LL, Ambrosino MM, et al. Hypertrophic pyloric stenosis in the infant without a palpable olive: accuracy of sonographic diagnosis. Pediatr Radiol 1994 193: 771–6

    CAS  Google Scholar 

  27. Hatiboglu MC, Dindar H, Cakmak M, et al. Neonatal hypetrophic pyloric stenosis: congenital or infantile? Tokai J Exp Clin Med 1996; 21(4-6): 203–5

    PubMed  CAS  Google Scholar 

  28. Houben CH, Kiely EM. Congenital hypertrophic pyloric stenosis with associated polyhydramnios in a premature infant. Eur J Pediatr Surg 1997; 7(3): 184–5

    Article  PubMed  CAS  Google Scholar 

  29. Ali KI, Haddad MJ. Early infantile hypertrophic pyloric stenosis: surgery at 26 hours of age. Eur J Pediatr Surg 1996; 6(4):233–4

    Article  PubMed  CAS  Google Scholar 

  30. Sinha CK, Gangopadhyay AN, Sahoo SP, et al. Congenital hypertrophic pyloric stenosis at birth. Indian J Pediatr 1996; 63(3): 413–4

    Article  PubMed  CAS  Google Scholar 

  31. Zajadacz B, Baraniak A, Juszkiewicz A. Hypetrophic pyloric stenosis in twins. Wiad Lek 1999; 52(11-12): 616–8

    PubMed  CAS  Google Scholar 

  32. Bidair M, Kalota SJ, Kaplan GW. Infantile hypertrophic pyloric stenosis and hydronephrosis: is there an association? J Urol 1993; 150(1): 153–5

    PubMed  CAS  Google Scholar 

  33. Nowaczyk MJM, Whelan DT, Heshka T, et al. Smith-Lemli-Opitz syndrome: a treatable inherited error of metabolism causing mental retardation. CMAJ 1999; 161(2): 165–70

    PubMed  CAS  Google Scholar 

  34. Katz S, Basel D, Branski D. Prenatal gastric dilatation and infantile hypertrophic pyloric stenosis. J Pediatr Surg 1988; 23(11): 1021–2

    Article  PubMed  CAS  Google Scholar 

  35. De Felice C, Di Maggio G, Zagordo L, et al. Hypoplastic or absent mandibular frenulum: a new predictive sign of infantile hypertrophic pyloric stenosis. J Pediatr 2000; 136: 408–10

    Article  PubMed  Google Scholar 

  36. Maraschio P, Maserati E, Seghezzi L, et al. Involvement of the 9q22.1-31.3 region in pyloric stenosis. Clin Genet 1998; 54(2): 159–60

    Article  PubMed  CAS  Google Scholar 

  37. Dodge JA, Karim AA. Induction of pyloric hypertrophy by penatgastrin: an animal model for infantile hypertrophic pyloric stenosis. Gut 1976; 17(4): 280–4

    Article  PubMed  CAS  Google Scholar 

  38. Chen D, Zhao CM, Nylander AG, et al. Trophic effects in the acid-producing part of the rat stomach after pyloric stenosis. Scand J Gastroenterol 1995; 30(12): 1147–52

    Article  PubMed  CAS  Google Scholar 

  39. Rogers IM. The enigma of pyloric stenosis: some thoughts on the aetiology. Acta Paediatr 1997; 87: 6–9

    Article  Google Scholar 

  40. Fiese EF, Steffen SH. Comparison of the acid stability of azithromycin and erythromycin A. J Antimicrob Chemother 1990; 25Suppl. A: 39–47

    Article  PubMed  CAS  Google Scholar 

  41. Kirst HA, Sides GD. New Directions for macrolide antibiotics: structural modifications and in vitro activity. Antimicrob Agents Chemother 1989; 33(9): 1413–8

    Article  PubMed  CAS  Google Scholar 

  42. Milla PJ. Gastric outlet obstruction in children. New Engl J Med 1992; 327(8): 558–9

    Article  PubMed  CAS  Google Scholar 

  43. Gentile C, Romeo C, Impellizzeri P, et al. A possible role of the plasmalemmal cytoskeleton, nitric oxide synthase, and innervation in infantile hypertrophic pyloric stenosis: a confocal laser scanning microscopic study. Pediatr Surg Int 1998; 14(1-2): 45–50

    Article  PubMed  CAS  Google Scholar 

  44. Shinohara K, Shimizu T, Igarashi J, et al. Correlation of prostaglandin E2 production and gastric acid secretion in infants with infantile hypertrophic pyloric stenosis. J Pediatr Surg 1998; 33(10): 1483–5

    Article  PubMed  CAS  Google Scholar 

  45. Langer JC, Berezin I, Daniel EE. Hypertrophic pyloric stenosis: ultrastructural abnormalities of enteric nerves and the interstitial cells of Cajal. J Pediatr Surg 1995; 30(11): 1535–43

    Article  PubMed  CAS  Google Scholar 

  46. Shima H, Ohshiro K, Puri P. Increased local synthesis of epidermal growth factors in infantile hypertrophic pyloric stenosis. Pediatr Res 2000; 47(2): 201–7

    Article  PubMed  CAS  Google Scholar 

  47. Shima H, Puri P. Increased expression of transforming growth factor-alpha in infantile hypertrophic pyloric stenosis. Pediatr Surg Int 1999; 15(3-4): 198–200

    Article  PubMed  CAS  Google Scholar 

  48. Oue T, Puri P. Smooth muscle cell hypertrophy versus hyperplasia in infantile hypertrophic pyloric stenosis. Pediatr Res 1999; 45(6): 853–7

    Article  PubMed  CAS  Google Scholar 

  49. Abel RM, Bishop AE, Dore CJ, et al. A quantitative study of the morphological and histochemical changes within the nerves and muscle in infantile hypertrophic pyloric stenosis. J Pediatr Surg 1998; 33(5): 682–7

    Article  PubMed  CAS  Google Scholar 

  50. Oshiro K, Puri P. Increased insulin-like growth factor-I mRNA expression in pyloric muscle in infantile hypertrophic pyloric stenosis. Pediatr Surg Int 1998; 13(4): 253–5

    Article  Google Scholar 

  51. Miyazaki E, Yamataka T, Ohshiro K, et al. Active collagen synthesis in infantile hypertrophic pyloric stenosis. Pediatr Surg Int 1998; 13(4): 237–9

    Article  PubMed  CAS  Google Scholar 

  52. Ohshiro K, Puri P. Increased insulin-like growth factor and platelet derived growth factor system in the pyloric muscle in infantile hypertrophic pyloric stenosis. J Pediatr Surg 1998; 33(2): 378–81

    Article  PubMed  CAS  Google Scholar 

  53. Oshiro K, Puri P. Pathogenesis of Infantile hypertrophic pyloric stenosis: recent progress. Pediatr Surg Int 1998; 13(4): 243–52

    Article  Google Scholar 

  54. Kusafuka T, Puri P. Altered messenger RNA expression of the neuronal nitric oxide synthase gene in infantile hypertrophic pyloric stenosis. Pediatr Surg Int 1997; 12(8): 576–9

    Article  PubMed  CAS  Google Scholar 

  55. Kobayashi H, Wester T, Puri P. Age-related changes in innervation in hypertrophic pyloric stenosis. J Pediatr Surg 1997; 32(12): 1704–7

    Article  PubMed  CAS  Google Scholar 

  56. Vanderwinden JM, Mailleux P, Schiffman SN, et al. Nitric oxide synthase activity in infantile pyloric stenosis. N Engl J Med 1992 327: 511–5

    Article  PubMed  CAS  Google Scholar 

  57. Ekblad E, Sjuve R, Arner A. Enteric neuronal plasticity and a reduced number of interstitial cells of Cajal in hypertrophic rat ileum. Gut 1998; 42(6): 836–44

    Article  PubMed  CAS  Google Scholar 

  58. Hummer-Ehret BH, Rohrschneider WK, Oleszcuk-Raschke K, et al. Eosinophilic gastroenteritis mimicking idiopathic hypertrophic pyloric stenosis. Pediatr Radiol 1998; 28: 711–3

    Article  PubMed  CAS  Google Scholar 

  59. Blankenberg FG, Parker BR, Sibley E, et al. Evolving asymmetric hypertrophic pyloric stenosis associated with histological evidence of eosinophilic gastroenteritis. Pediatr Radiol 1995 25: 310–1

    Article  PubMed  CAS  Google Scholar 

  60. Snyder JD, Rosenblum N, Wershil B, et al. Pyloric stenosis and eosinophilic gastroenteritis in infants. J Pediatr Gastroenterol Nutr 1987; 6: 543–7

    Article  PubMed  CAS  Google Scholar 

  61. Khan S, Orenstein SR. Eosinophilic gastroenteritis masquerading as pyloric stenosis. Clin Pediatr 2000; 39: 55–7

    Article  CAS  Google Scholar 

  62. SanFilipo JA. Infantile hypertrophic pyloric stenosis related to ingestion of erythromycin estolate: a report of 5 cases. J Pediatr Surg 1976; 11: 177–80

    Article  Google Scholar 

  63. Stang H. Pyloric stenosis associated with erythromycin ingested through breastmilk. Minn Med 1986; 69: 669–70, 682

    PubMed  CAS  Google Scholar 

  64. Mahon BE, Rosenman MB, Kleiman MB. Maternal and infant use of erythromycin and other macrolide antibiotics as risk factors for infantile hypertrophic pyloric stenosis. J Pediatr 2001; 139: 380–4

    Article  PubMed  CAS  Google Scholar 

  65. Louik CL, Martha M, Mitchell AA. Erythromycin use during pregnancy in relation to pyloric stenosis. Am J Obstet Gynecol 2002; 186: 288–90

    Article  PubMed  CAS  Google Scholar 

  66. Cooper WO, Griffin MR, Arbogast P, et al. Very early exposure to erythromycin and infantile hypertrophic pyloric stenosis. Arch Pediatr Adolesc Med 2002 156: 647–50

    PubMed  Google Scholar 

  67. Tomomsa T, Kuroume T, Arai H, et al. Erythromycin induces migrating motor complex in human gastrointestinal tract. Dig Dis Sci 1986; 31(2): 157–61

    Article  Google Scholar 

  68. Annese V, Janssens J, Vantrappen G, et al. Erythromycin accelerates gastric emptying by inducing antral contractions and improved gastroduodenal coordination. Gastroenterology 1992 102: 823–8

    PubMed  CAS  Google Scholar 

  69. Des Varannes SB, Parys V, Ropert A. Erythromycin enhances fasting and postprandial proximal gastric tone in humans. Gastroenterology 1995; 109: 32–9

    Article  Google Scholar 

  70. Ng E, Shah V. Erythromycin for feeding intolerance in preterm infants. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 4. Oxford: Update Software 2000; 2: CD001815

  71. Ng PC, Fok TF, Lee CH, et al. Erythromycin treatment for gastrointestinal dysmotility in preterm infants. J Pediatr Child Health 1997; 33(2): 148–50

    Article  CAS  Google Scholar 

  72. Simkiss DE, Adams IP, Myrdal U, et al. Erythromycin in neonatal postoperative intestinal dysmotility. Arch Dis Child 1994; 71(2): F128–9

    Article  PubMed  CAS  Google Scholar 

  73. Kubota M, Nakamura T, Mokura T, et al. Erythromycin improves gastrointestinal motility in extremely low birthweight infants. Acta Pediatr Jpn 1994; 36(2): 198–201

    Article  CAS  Google Scholar 

  74. Depoortere I, Peeters TL, Matthijs G, et al. Structure-activity relation of erythromycin-related macrolides in inducing contractions and in displacing bound motilin in rabbit duodenum. J Gastrointest Motil 1989 1: 150–9

    Google Scholar 

  75. Itoh Z, Tomoaki S, Nakaya M, et al. Gastrointestinal motor-stimulating activity of macrolide antibiotics and analysis of their side effects on the canine gut. Antimicrob Agents Chemother 1984 26: 863–9

    Article  PubMed  CAS  Google Scholar 

  76. Itoh Z, Suzuki T, Nakaya M, et al. Structure-activity relation among macrolide antibiotics in initiation of interdigestive migrating contractions in the canine gastrointestinal tract. Am J Physiol 1985 248: G320–5

    PubMed  CAS  Google Scholar 

  77. Omura S, Tsuzuki K, Sunazuka T, et al. Macrolides with gastrointestinal motor stimulating activity. J Med Chem 1987; 30(11): 1941–3

    Article  PubMed  CAS  Google Scholar 

  78. Nellans HN, Peeters TL, Petersen AC. Stimulation of gastrokinetic motility: clarithromycin less potent than azithromycin. Proceedings of the 17th International Congress of Chemotherapy; 1991 Jun 24; Berlin. Munich: Futuramed, 1991: 2286–7

    Google Scholar 

  79. Sifrim D, Janssens J, Vantrappen G. Comparison of the effects of midecamycin acetate and clarithromycin on gastrointestinal motility in man.Drugs Exp Clin Res 1992; 18(8): 337–42

    PubMed  CAS  Google Scholar 

  80. Sifrim D, Matsuo H, Janssens J, et al. Comparison of the effects of midecamycin acetate and azithromycin on gastrointestinal motility in man. Drugs Exp Clin Res 1994; 20(3): 121–6

    PubMed  CAS  Google Scholar 

  81. Nakayoshi T, Izumi M, Tatsuta K. Effects of macrolide antibiotics on gastrointestinal motility in fasting and digestive states. Drugs Exp Clin Res 1992; 18(4): 103–9

    PubMed  CAS  Google Scholar 

  82. Nakayoshi T, Izumi M, Shinkai S, et al. Comparative study on effects of 14- and 16-membered macrolides on gastrointestinal motility in unanaesthetized dogs. Drugs Exp Clin Res 1988; 14(5): 319–25

    PubMed  CAS  Google Scholar 

  83. Tsuzuki K, Sunazuka T, Marui S, et al. Motilides, macrolides with gastrointestinal motor activity. I. O-substituted and tertiary N-substituted derivatives of 8,9-anhydroerythromycin A 6,9-hemiacetal Chem Pharm Bull (Tokyo) 1989; 37(10): 2687–700

    Article  CAS  Google Scholar 

  84. Sunazuka T, Tsuzuki K, Marui S, et al. Motilides, macrolides with gastrointestinal motor stimulating activity: II. quaternary N-substituted derivatives of 8,9-anhydroerythromycin A 6,9-hemiacetal and 9,9-dihydroerythromycin A. Chem Pharm Bull (Tokyo) 1989; 37(10): 2701–9

    Article  CAS  Google Scholar 

  85. Ehrenpreis ED, Zaitman D, Nellans H. Which form of erythromycin should be used to treat gastroparesis? a pharmacokinetic analysis. Aliment Pharmacol Ther 1998; 12: 373–6

    Article  PubMed  CAS  Google Scholar 

  86. Data on file, Pfizer Inc.

  87. Forester G, Sidhom O, Nahass R, et al. AIDS-associated cryptosporidiosis with gastric stricture and a therapeutic response to paromycin. Am J Gastroenterol 1994; 89(7): 1096–8

    PubMed  CAS  Google Scholar 

  88. Garone MA, Winston BJ, Lewis JH. Cryptosporidiosis of the stomach. Am J Gastroenenterol 1986; 81(6): 465–70

    CAS  Google Scholar 

  89. Moon A, Spivak W, Brandt LJ. Cryptosporidium-induced gastric outlet obstruction in a child with congenital HIV infection: case report and review of the literature. J Pediatr Gastroenterol Nutr 1999; 28(1): 108–11

    Article  PubMed  CAS  Google Scholar 

  90. Aoyama T, Sunakawa K, Iwata S, et al. Efficacy of short-term treatment of pertussis with clarithromycin and azithromycin. J Pediatr 1996 129: 761–4

    Article  PubMed  CAS  Google Scholar 

  91. Bace A, Zrnic T, Begovac J, et al. Short term treatment of pertussis with azithromycin in infants and young children. Eur J Clin Infect Dis 1999 18: 296–8

    Article  CAS  Google Scholar 

  92. Eskanazi B, Bracken B. Bendectin as a risk factor for pyloric stenosis. Am J Obstet Gynecol 1982; 144: 919–24

    Google Scholar 

  93. Mitchell AA, Schwingl PJ, Rosenberg L, et al. Birth defects in relation to Bendectin use in pregnancy. Am J Obstet Gynecol 1983 147: 737–42

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Jingping Mo for her thoughtful comments on the epidemiological studies discussed in this review. Conflicts of interest: Dr Hauben works for Pfizer Inc., Dr Amsden is a consultant, researcher and speaker for Pfizer Inc., consultant and researcher for Pliva, and has conducted research on behalf of Abbott, Bristol-Myers Squibb, GlaxoSmithKline and Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy W. Amsden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauben, M., Amsden, G.W. The Association of Erythromycin and Infantile Hypertrophic Pyloric Stenosis. Drug-Safety 25, 929–942 (2002). https://doi.org/10.2165/00002018-200225130-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200225130-00004

Keywords

Navigation