Am J Perinatol 2006; 23(8): 451-458
DOI: 10.1055/s-2006-951300
Copyright © by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Association of Necrotizing Enterocolitis with Elective Packed Red Blood Cell Transfusions in Stable, Growing, Premature Neonates

Pradeep Mally1 , 2 , Sergio G. Golombek2 , Ravi Mishra2 , Sarvesh Nigam2 , Kala Mohandas3 , Helene Depalhma3 , Edmund F. LaGamma2
  • 1Division of Neonatology, New York University School of Medicine, New York
  • 2The Regional Neonatal Center, Westchester Medical Center, New York Medical College, Valhalla, New York
  • 3Blood Bank, Westchester Medical Center-New York Medical College, Valhalla, New York
Further Information

Publication History

Publication Date:
28 September 2006 (online)

ABSTRACT

The purpose of this study was to determine an association between packed red blood cell (PRBC) transfusions for anemia and necrotizing enterocolitis (NEC) in a subset of stable, growing, premature neonates. As part of a survey of current clinical practices over a 17-month period from June 1999 to October 2000, a chart review was performed to determine the relationship between elective PRBC transfusions and the occurrence of NEC. Demographic data were tabulated and compared between the NEC patients with a prior history of immediate blood transfusion (within 48 hours of onset of symptoms) and those NEC patients without a prior history of immediate blood transfusion. A total of 908 (inborn) neonatal admissions had received 751 PRBC transfusions during the study period; of these, 17 patients (1.8%) had developed radiographic, clinical, or surgical signs of NEC. Six cases of NEC (35%; six of 17 patients) were associated with PRBC transfusions (0.8%; six of 751 transfusions). The transfusion-associated NEC group developed presenting signs within 22 ± 5 hours (median, 19; range, 12 to 38) of a PRBC transfusion at a mean age of 32 ± 7 days. In contrast, the non-transfusion-associated NEC group (n = 11) had onset of NEC at a mean age of 12 ± 7 days (p < 0.05) after 185 ± 91 hours (median, 180; range, 96 to 312; p < 0.02] of a transfusion. Prior to the onset of NEC, all of the neonates in the transfusion-associated NEC group were stable, growing, not ventilated, receiving full enteral feedings, and had no other active medical problems except anemia (hematocrit, 24 ± 3%). In contrast, the nontransfusion NEC group was more often ventilated, was receiving < 50% of fluids by mouth, had lower Apgar scores, and was transfused for an average hematocrit of 37 ± 7% (p < 0.05). There was no significant difference in the type, storage, volume, or preservative used between the blood products in the two groups. We identified an unanticipated relationship between late-onset NEC in stable, growing, premature neonates who were transfused electively for anemia of prematurity.

REFERENCES

  • 1 Uauy R D, Fanaroff A A, Korones S B, Phillips E A, Phillips J B, Wright L L. Necrotizing enterocolitis in very low birth weight infants: biodemographic and clinical correlates.  J Pediatr. 1991;  119 630-638
  • 2 LaGamma E F, Ostertag S G, Birenbaum H. Delayed feedings fails to prevent necrotizing enterocolitis in low birthweight neonates.  Am J Dis Child. 1985;  139 385-389
  • 3 LaGamma E F, Browne L E. Feeding practices for infants weighing less than 1500 g at birth and the pathogenesis of necrotizing enterocolitis.  Clinics in Perinatology. 1994;  21 271-304
  • 4 Fergusson D, Hebert P C, Lee S K et al.. Clinical outcomes following institution of universal leukoreduction of blood transfusions for premature infants.  JAMA. 2003;  289 1950-1956
  • 5 Maier R F, Obladen M, Scigalla P et al.. The effect of beta (recombinant human erythopoietin) on the need for transfusion in very-low-birth-weight infants.  N Engl J Med. 1994;  330 1173-1178
  • 6 Bednarek F J, Weisberger S, Richardson D K. Variations in blood transfusions among new born intensive care units.  J Pediatr. 1998;  133 601-607
  • 7 Papile L A, Burstein J, Burstein R. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 grams.  J Pediatr. 1978;  92 529-534
  • 8 Brumberg H, LaGamma E F. New Perspectives on nutrition enhance outcomes for premature infants.  Pediatr Ann. 2003;  32 617-625
  • 9 Adan D, LaGamma E F, Browne L E. Nutritional management and multisystem organ failure/systemic inflammatory response syndrome in critically ill preterm neonates.  Crit Care Clin. 1995;  11 751-770
  • 10 Omar S A, DeCristofaro J D, Agarwal B L, LaGamma E F. Effects of prenatal steroids on potassium balance in extremely low birth weight neonates.  Pediatrics. 2000;  106 561-567
  • 11 Omar S, Agarwal G L, DeCristofaro J D, LaGamma E F. Effects of dexamethasone on fluid balance in preterm neonates weighing < 800 g at birth.  Pediatrics. 1999;  104 482-488
  • 12 Biswas S, Marlborough C, Johnson L, Golombek S G, LaGamma E F. The use of bedside pulmonary mechanics with synchronized, assist-control ventilation to achieve optimal FRC and lower mean airway pressure (MAP).  Pediatr Res. 1999;  45(4 part 2) 296A
  • 13 Mishra R, Golombek S G, Ramirez-Tolentino S R, Das S, LaGamma E F. Low-birth-weight neonates exhibit a physiological set-point to regulate CO2: an untapped potential to minimize volutrauma-associated lung injury.  Am J Perinatol. 2003;  20 453-463
  • 14 Agwu J C, Narchi H. In a preterm infant, does transfusion increase the risk of necrotizing enterocolitis?.  Arch Dis Child. 2005;  90 102-103
  • 15 McGrady G A, Rettig P J, Istre G R, Jason J M. An outbreak of necrotizing enterocolitis association with transfusion of packed red cells.  Am J Epidemiol. 1987;  126 1165-1172
  • 16 Patrick D A, Moore E E, Barnett C C, Silliman C C. Human polymerized hemoglobin as a blood substitute avoids transfusion-induced neutrophils priming.  Surg Forum. 1996;  47 36-38
  • 17 Silliman C. Transfusion related acute lung injury.  Transfusion. 1999;  13 177-186
  • 18 Ledbetter D J, Juul S E. Necrotizing enterocolitis and hematopoietic cytokines.  Clin Perinatol. 2000;  27 697-716
  • 19 Chin-Yee I, Arya N, d'Almeida M S. The red cell storage lesion and its implication for transfusion.  Transfus Sci. 1997;  18 447-458
  • 20 Haradin A R, Weed R I, Reed C F. Changes in physical properties of stored erythrocytes.  Transfusion. 1969;  9 229-235
  • 21 Simchon S, Jan K M, Chien S. Influence of red cell deformability on regional flow.  Am J Physiol. 1987;  253 H895-H903
  • 22 Stuart J, Nash G B. Red cell deformability and hematological disorders.  Blood Rev. 1990;  4 141-147
  • 23 Greenwald T J, Bryan T J, Dumaswala V J. Erythrocyte membrane vesiculation and changes in membrane composition during storage in CPD-adenine-1.  Vox Sang. 1984;  47 261-270
  • 24 Apstein C S, Dennis R C, Briggs L. Effects of erythrocyte storage and oxyhemoglobin affinity changes on cardiac function.  Am J Physiol. 1985;  285 H508-H515
  • 25 Sham B, Messerly A M. Apnea in the premature infant: an overview of causes and treatment.  Nurs Clin North Am. 1978;  13 29-37
  • 26 Bhatia J. Current options in the management of apnea of prematurity.  Clin Pediatr (Phila). 2000;  39 327-336
  • 27 Morage E, Campbell K, Costeloe L. Measuring intramucosal pH in very low birth weight infants.  Pediatr Res. 2001;  50 398-404
  • 28 Parvez B, LaGamma E F. Gut tonometry-a new metabolic monitor for neonates.  Pediatr Res. 1998;  44 A1092
  • 29 Miller J P, Mintz P D. The use of leukocyte-reduced blood components.  Hematol Oncol Clin North Am. 1995;  9 69-90
  • 30 Dzik S, AuBuchon J, Jeffries L et al.. Leucocyte reduction of blood components: public policy and new technology.  Transfus Med Rev. 2000;  14 34-52
  • 31 Bordin J O, Heddle N M, Blajchman M A. Biologic effects of leucocytes present in transfused cellular blood products.  Blood. 1994;  84 1703-1721
  • 32 Wang-Rodriguez J, Fry E, Fiebig E et al.. Immune response to blood transfusion in very low birthweight infants.  Transfusion. 2000;  40 25-34
  • 33 Gottschall J L, Johnston V L, Rzad L, Anderson A J, Aster R H. Importance of white blood cells in platelet storage.  Vox Sang. 1984;  47 101-107
  • 34 Morecroft J A, Spitz L, Hamilton P A, Holmes S J. Plasma interleukin-6 and tumor necrosis factor levels as predictors of disease severity and outcome in NEC.  J Pediatr Surg. 1994;  29 798-800
  • 35 Harris M C, Costarino A T, Sullivan J S. Cytokine elevations in critically ill infants with sepsis and NEC.  J Pediatr. 1994;  124 105-111
  • 36 Caplan M S, Sun X M, Hseuh W, Hageman J R. Role of platelet activating factor and TNF-alpha in neonatal necrotizing enterocolitis.  J Pediatr. 1990;  116 960-964
  • 37 McCabe R P, Secrist H, Botney M, Egan M, Peters M G. Cytokine mRNA expression in intestine from normal and inflammatory bowel disease patients.  Clin Immunol Immunopathol. 1993;  66 52-58
  • 38 Mazzucchelli L, Hauser C, Zgraggen K. Expression of interleukin-8 gene in inflammatory bowel disease is related to the histological grade of active inflammation.  Am J Pathol. 1994;  5 997-1007
  • 39 Viscardi R M, Lyon N H, Sun C C, Hebel J R, Hasday J D. Inflammatory cytokine mRNAs in surgical specimens of NEC and normal newborn intestine.  Pediatr Pathol Lab Med. 1997;  17 547-559
  • 40 Strauss R G. Data-driven blood banking practices for neonatal RBC transfusions.  Transfusion. 2000;  40 1528-1540

Pradeep MallyM.D. 

Division of Neonatology, New York University School of Medicine

530 First Avenue, Suite 7A, New York, NY 10016

    >