Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Developmental stage–selective effect of somatically mutated leukemogenic transcription factor GATA1

Abstract

Acquired mutations in the hematopoietic transcription factor GATA binding protein-1 (GATA1) are found in megakaryoblasts from nearly all individuals with Down syndrome with transient myeloproliferative disorder (TMD, also called transient leukemia) and the related acute megakaryoblastic leukemia (DS-AMKL, also called DS-AML M7)1,2,3,4,5,6. These mutations lead to production of a variant GATA1 protein (GATA1s) that is truncated at its N terminus. To understand the biological properties of GATA1s and its relation to DS-AMKL and TMD, we used gene targeting to generate Gata1 alleles that express GATA1s in mice. We show that the dominant action of GATA1s leads to hyperproliferation of a unique, previously unrecognized yolk sac and fetal liver progenitor, which we propose accounts for the transient nature of TMD and the restriction of DS-AMKL to infants. Our observations raise the possibility that the target cells in other leukemias of infancy and early childhood are distinct from those in adult leukemias and underscore the interplay between specific oncoproteins and potential target cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GATA1s supports normal adult megakaryopoiesis.
Figure 2: GATA1s perturbs fetal hematopoiesis and leads to hyperproliferation of a transient wave of yolk sac and fetal liver progenitors.
Figure 3: GATA1s largely uncouples cellular proliferation from differentiation.
Figure 4: GATA1s acts dominantly on sensitive progenitor cells.
Figure 5: Proposed model of target cells and pathways leading to DS-AMKL.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Wechsler, J. et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat. Genet. 32, 148–152 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Hitzler, J.K., Cheung, J., Li, Y., Scherer, S.W. & Zipursky, A. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood 101, 4301–4304 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Rainis, L. et al. Mutations in exon 2 of GATA1 are early events in megakaryocytic malignancies associated with trisomy 21. Blood 102, 981–986 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Mundschau, G. et al. Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood 101, 4298–4300 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Xu, G. et al. Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down's syndrome. Blood 102, 2960–2968 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Ahmed, M. et al. Natural history of GATA1 mutations in Down syndrome. Blood 103, 2480–2489 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Gurbuxani, S., Vyas, P. & Crispino, J.D. Recent insights into the mechanisms of myeloid leukemogenesis in Down syndrome. Blood 103, 399–406 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Blobel, G.A., Simon, M.C. & Orkin, S.H. Rescue of GATA-1-deficient embryonic stem cells by heterologous GATA-binding proteins. Mol. Cell. Biol. 15, 626–633 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Visvader, J.E., Crossley, M., Hill, J., Orkin, S.H. & Adams, J.M. The C-terminal zinc finger of GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentiation of an early myeloid cell line. Mol. Cell. Biol. 15, 634–641 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weiss, M.J., Yu, C. & Orkin, S.H. Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. Mol. Cell. Biol. 17, 1642–1651 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shimizu, R., Takahashi, S., Ohneda, K., Engel, J.D. & Yamamoto, M. In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis. EMBO J. 20, 5250–5260 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Shivdasani, R.A., Fujiwara, Y., McDevitt, M.A. & Orkin, S.H. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J. 16, 3965–3973 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vyas, P., Ault, K., Jackson, C.W., Orkin, S.H. & Shivdasani, R.A. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood 93, 2867–2875 (1999).

    CAS  PubMed  Google Scholar 

  15. Rylski, M. et al. GATA-1-mediated proliferation arrest during erythroid maturation. Mol. Cell. Biol. 23, 5031–5042 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Welch, J.J. et al. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood 104, 3136–3147 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Weiss, M.J., Keller, G. & Orkin, S.H. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev. 8, 1184–1197 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Tsai, F.Y. et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371, 221–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Scott, E.W., Simon, M.C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Martin, D.I. & Orkin, S.H. Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes Dev. 4, 1886–1898 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Hitzler, J.K. & Zipursky, A. Origins of leukaemia in children with Down syndrome. Nat. Rev. Cancer 5, 11–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. McDevitt, M.A., Fujiwara, Y., Shivdasani, R.A. & Orkin, S.H. An upstream, DNase I hypersensitive region of the hematopoietic-expressed transcription factor GATA-1 gene confers developmental specificity in transgenic mice. Proc. Natl. Acad. Sci. USA 94, 7976–7981 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crispino, J.D., Lodish, M.B., MacKay, J.P. & Orkin, S.H. Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol. Cell 3, 219–228 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Crispino, J.D. GATA1 mutations in Down syndrome: implications for biology and diagnosis of children with transient myeloproliferative disorder and acute megakaryoblastic leukemia. Pediatr. Blood Cancer 44, 40–44 (2004).

    Article  Google Scholar 

  26. Gagneten, S., Le, Y., Miller, J. & Sauer, B. Brief expression of a GFP cre fusion gene in embryonic stem cells allows rapid retrieval of site-specific genomic deletions. Nucleic Acids Res. 25, 3326–3331 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Keller, G., Kennedy, M., Papayannopoulou, T. & Wiles, M.V. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol. Cell. Biol. 13, 473–486 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, C. & Wong, W.H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA 98, 31–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Vyas, P., Norris, F.A., Joseph, R., Majerus, P.W. & Orkin, S.H. Inositol polyphosphate 4-phosphatase type I regulates cell growth downstream of transcription factor GATA-1. Proc. Natl. Acad. Sci. USA 97, 13696–13701 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Hock, Y. Fujiwara and J.-P. Bourquin for suggestions and technical assistance; C. Browne and O. Ogai for technical assistance with ES cell targeting; A. Williams and N. Stokes for help with transgenic mice; M. Hamblen for general lab support; and R. Shivdasani and Z. Chen for discussion and help on megakaryocyte ex vivo culture. Z.L. is a Fellow of the Leukemia & Lymphoma Society. J.-H.K. is supported by the German National Academic Foundation and the AML-BFM Study Group. This work was supported by grants to S.H.O. from the US National Institutes of Health. S.H.O. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart H Orkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Targeting strategies. (PDF 48 kb)

Supplementary Fig. 2

GATA1e2fl conditional knockin. (PDF 168 kb)

Supplementary Fig. 3

AChE and antibody staining. (PDF 203 kb)

Supplementary Table 1

Summary of the microarray data. (PDF 164 kb)

Supplementary Table 2

Primer sequences. (PDF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Godinho, F., Klusmann, JH. et al. Developmental stage–selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat Genet 37, 613–619 (2005). https://doi.org/10.1038/ng1566

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1566

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing