Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract

Abstract

Apoptosis has recently been recognized as a mode of cell death in Huntington disease (HD). Apopain, a human counterpart of the nematode cysteine protease death–gene product, CED–3, has a key role in proteolytic events leading to apoptosis. Here we show that apoptotic extracts and apopain itself specifically cleave the HD gene product, huntingtin. The rate of cleavage increases with the length of the huntingtin polyglutamine tract, providing an explanation for the gain–of–function associated with GAG expansion. Our results show that huntingtin is cleaved by cysteine proteases and suggest that HD might be a disorder of inappropriate apoptosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Martin, S.J. & Green, D.R., Protease Activation during Apoptosis: Death by a Thousand Cuts?. Cell 82, 349–352 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Ellis, H.M. & Horvitz, H.R. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cell 44, 817–829 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Yuan, J.-Y. et al. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75, 641–652 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Nicholson, D.W. et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Tewari, M. et al. Yama/CPP32β, a Mammalian Homolog of CED-3, Is a CrmA-lnhibitable Protease That Cleaves the Death Substrate Poly(ADP-Ribose) Polymerase. Cell 81, 801–809 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Fernandes-Alnemri, T. Litwack, G. & Alnemri, E.S. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1βp converting enzyme. J. Biol. Chem. 270, 15870–15976 (1994).

    Google Scholar 

  7. Casciola-Rosen, L.A., Grant, J.A. & Rosen, A. DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J. Exp. Med. 182, 1625–1634 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, X. et al. Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis. EMBO J. 15, 1012–1020 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hayden, M.R., Huntington's Chorea.(London: Springer-Verlag, 1981).

    Book  Google Scholar 

  10. Harper, P.S., Huntington's Disease. (London: W. B. Saunders, 1991).

    Google Scholar 

  11. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  12. Kremer, H.P.H. et al. Worldwide Study of the Huntington's disease mutation: the sensitivity and specificity of repeated CAG sequences. N. Engl. J. Med. 330, 1401–1406 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Sharp, A. et al. Widespread expression of Huntington's disease gene (IT-15) protein product. Neuron. 14, 1065–1074 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. DiFiglia, M. et al. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron. 14, 1075–1081 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Trottier, Y. et al. Polyglutamine expansion as a common pathological epitope detected in Huntington's disease, in spinocerebellar ataxia 1 and 3 and two additional autosomal dominant cerebellar ataxias. Nature 378, 403–406 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Gutekunst, C.-A. et al. Identification and localization of huntingtin in brain and human lymphoblastoid cell lines with anti-fusion protein antibodies. Proc. Natl. Acad. Sci. USA 92, 8710–8714 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burke, J.R. et al. Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nature Med. 2, 347–350 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Jou, Y.S. & Myers, R.M. Evidence from antibody studies that the CAG repeat in the Huntington disease gene is expressed in the protein. Hum. Mol. Genet. 4, 465–469 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Thomas, L.B. et al. DNA End Labeling (TUNEL) in Huntington's Disease and Other Neuropathological Conditions. Exp. Neurol. 133, 265–272 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Dragunow, M. et al. In situ evidence for DMA fragmentation in Huntington's disease striatum and Alzheimer's disease temporal lobes. Clin. Neurosci. Neuropath. 6, 1053–1057 (1995).

    CAS  Google Scholar 

  21. Protera-Cailliau, C., Hedreen, J.C., Price, D.L. & Koliatsos, V.E. Evidence for Apoptotic Cell Death in Huntington Disease and Excitotoxic Animal Models. J. Neurosci. 15, 3775–3787 (1995).

    Article  Google Scholar 

  22. Nasir, J. et al. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81, 811–823 (1995).

    Google Scholar 

  23. Duyao, M.P. et al . Inactivation of the mouse Huntington's disease gene homolog Hdh. Science 269, 407–410 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Zeitlin, S., Liu, J.-P., Chapman, D.L., Papaioannou, V.E. & Efstratiadis, A. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nature Genet. 11, 155–162 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Goldberg, Y.P. et al Absence of disease phenotype and intergenerational stability of the CAG repeat in transgenic mice expressing the Huntington disease transcript. Hum. Mol. Genet. 5, 177–185 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Lazebnik, Y.A., Kaufmann, S.H., Desnoyers, S., Poirier, G.G. & Earnshaw, W.C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346–347 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Burright, E.N. et al. SCA1 Transgenic Mice: A Model for Neurodegeneration Caused by an Expanded CAG Trinucleotide Repeat. Cell 82, 937–948 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Thornberry, N.A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356, 768–774 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Casciola-Rosen, L.A., Miller, D.K., Anhalt, G.J & Rosen, A. Specific cleavage of the 70-kD protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. J. Biol. Chem. 269, 30757–30760 (1994).

    CAS  PubMed  Google Scholar 

  30. Nicholson, D.W. ICE/CED3-like proteases as therapeutic targets for the control of inappropriate apoptosis. Nature Biotech. 14, 297–301 (1996).

    Article  CAS  Google Scholar 

  31. Fernandes-Alnemri, T. et al. Mch3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res. 55, 6045–6052 (1995).

    CAS  PubMed  Google Scholar 

  32. Telenius, H. et al. Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent. Hum. Mol. Genet. 2, 1535–1540 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Bump, N.J. et al. Inhibition of ICE Family Proteases by Baculovirus Antiapoptotic Protein p35. Science. 269, 1885–1888 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Xue, D. & Horvitz, H.R. Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 377, 248–251 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Thornberry, N.A. Interleukin-1 beta converting enzyme. Meth. Enzymol. 244, 615–631 (1994).

    Article  CAS  Google Scholar 

  36. Towbin, H., Staehelin, T. & Gordon, J. Electrophoretic transfer of proteins form polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaufmann, S.H., Desnoyers, S., Ottaviano, Y., Davidson, N.E., Poirier, G.G. Specific Proteolytic Cleavage of Poly (ADP-ribose) Polymerase: An Early Marker of Chemotherapy-induced Apoptosis. Cancer Res. 53, 3976–3985 (1993)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldberg, Y., Nicholson, D., Rasper, D. et al. Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet 13, 442–449 (1996). https://doi.org/10.1038/ng0896-442

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0896-442

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing