Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

A genetic approach to understanding auditory function

Abstract

Little is known of the molecular basis of normal auditory function. In contrast to the visual or olfactory senses, in which reasonable amounts of sensory tissue can be gathered, the auditory system has proven difficult to access through biochemical routes, mainly because such small amounts of tissue are available for analysis. Key molecules, such as the transduction channel, may be present in only a few tens of copies per sensory hair cell, compounding the difficulty. Moreover, fundamental differences in the mechanism of stimulation and, most importantly, the speed of response of audition compared with other senses means that we have no well-understood models to provide good candidate molecules for investigation. For these reasons, a genetic approach is useful for identifying the key components of auditory transduction, as it makes no assumptions about the nature or expression level of molecules essential for hearing. We review here some of the major advances in our understanding of auditory function resulting from the recent rapid progress in identification of genes involved in deafness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the top, apical surface of a hair cell, showing two of the tens to hundreds of stereocilia that make up the hair bundle and are inserted into the cuticular plate.

Bob Crimi

Figure 2: Schematic illustrations of an inner hair cell (IHC, flask shaped) and an outer hair cell (OHC, cylindrical) showing locations in the basolateral membrane of functionally important gene products.

Bob Crimi

Figure 3: Scanning electron micrographs of the upper surface of outer hair cells, showing the stereocilia bundles.
Figure 4: Illustration of cochlear duct showing the proposed lateral (right) and medial (left) K+ ion recycling pathways from the sensory hair cells within the organ of Corti back to the endolymph48.

Bob Crimi

Similar content being viewed by others

References

  1. Petit, C. Genes responsible for human hereditary deafness: symphony of a thousand. Nature Genet. 14, 385–391 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Davis, A.C. Hearing in Adults (Whurr, London, 1995).

    Google Scholar 

  3. Steel, K.P., Erven, A. & Kiernan, A.E. Mice as models for human hereditary deafness. in Genetics and Auditory Disorders (eds. Keats, B., Fay, R. & Popper, A.N.) (Springer, New York, in press).

  4. Gibson, F. et al. A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374, 62–64 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Probst, F.J. et al. Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280, 1444–1447 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Minowa, O. et al. Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. Science 285, 1408–1411 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Phippard, D., Lu, L., Lee, D., Saunders, J.C. & Crenshaw, E.B. III Targeted mutagenesis of the POU-domain gene Brn4/Pou3f4 causes developmental defects in the inner ear. J. Neurosci. 19, 5980–5989 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Erkman, L., McEvilly, R.J., Luo, L. & Ryan, A.K. Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Nature 381, 603–606 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. McGuirt, W.T. et al. Mutations in COL11A2 cause non-syndromic hearing loss (DFNA13). Nature Genet. 23, 413–419 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Legan, P.K. et al. A targeted deletion in α-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron 28, 273–285 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Di Palma, F. et al. Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nature Genet. 27, 103–107 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Everett, L.A. et al. Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum. Mol. Genet. 10, 153–161 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Corey, D.P. & Hudspeth, A.J. Kinetics of the receptor current in bullfrog saccular hair cells. J. Neurosci. 3, 962–976 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Howard, J. & Hudspeth, A.J. Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell. Neuron 1, 189–199 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Holt, J.R. & Corey, D.P. Two mechanisms for transducer adaptation in vertebrate hair cells. Proc. Natl. Acad. Sci. USA 97, 11730–11735 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Avraham, K.B. et al. The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner hair cells. Nature Genet. 11, 369–375 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Self, T. et al. Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 125, 557–566 (1998).

    CAS  PubMed  Google Scholar 

  18. Self, T. et al. Role of myosin VI in the development of cochlear hair cells. Dev. Biol. 214, 331–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Weil, D. et al. Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374, 60–61 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Weil, D. et al. The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene. Nature Genet. 16, 191–193 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, X.-Z. et al. Mutations in the myosin VIIA gene causing non-syndromic recessive deafness. Nature Genet. 16, 188–190 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, A. et al. Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 280, 1447–1451 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Wells, A.L. et al. Myosin VI is an actin-based motor that moves backwards. Nature 401, 505–508 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Richardson, G.P. et al. A missense mutation in myosin VIIA prevents aminoglycoside accumulation in early postnatal cochlear hair cells. Ann. NY Acad. Sci. 884, 110–124 (1999).

    CAS  PubMed  Google Scholar 

  25. Küssel-Andermann, P. et al. Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex. EMBO J. 19, 6020–6029 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Verpy, E. et al. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nature Genet. 26, 51–55 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Bitner-Glindzicz, M. et al. A recessive contiguous gene delection causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene. Nature Genet. 26, 56–60 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Alagramam, K.N. et al. The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene. Nature Genet. 27, 99–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Zheng, L. et al. The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 102, 377–385 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ohmori, H. Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J. Physiol. 359, 189–217 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ricci, A.J. & Fettiplace, R. Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J. Physiol. 506, 159–173 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamoah, E.N. et al. Plasma membrane Ca2+-ATPase extrudes Ca2+ from hair cell stereocilia. J. Neurosci. 18, 610–624 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Street, V.A., McKee-Johnson, J.W., Fonseca, R.C., Tempel, B.L. & Noben-Trauth, K. Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nature Genet. 19, 390–394 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Kozel, P.J. et al. Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J. Biol. Chem. 273, 18693–18696 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Yasunaga, S. et al. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a non-syndromic form of deafness. Nature Genet. 21, 363–369 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Platzer, J. et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102, 89–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Géléoc, G.S.G., Casalotti, S.O., Forge, A. & Ashmore, J.F. A sugar transporter as a candidate for the outer hair cell motor. Nature Neurosci. 2, 713–719 (1999).

    Article  PubMed  Google Scholar 

  38. Zheng, J. et al. Prestin is the motor protein of cochlear outer hair cells. Nature 405, 149–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Belyantseva, I.A., Adler, H.J., Curi, R., Frolenkov, G.I. & Kachar, B. Expression and localisation of prestin and the sugar transporter GLUT-5 during development of electromotility in cochlear outer hair cells. J. Neurosci. 20, RC116 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Walker, R.G., Willingham, A.T. & Zuker, C.S. A Drosophila mechanosensory transduction channel. Science 287, 2229–2234 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Simmler, M.C. et al. Targeted disruption of Otog results in deafness and severe imbalance. Nature Genet. 24, 139–143 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Verhoeven, K. et al. Mutations in the human α-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nature Genet. 19, 60–62 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Steel, K.P., Barkway, C. & Bock, G.R. Strial dysfunction in mice with cochleo-saccular abnormalities. Hear. Res. 27, 11–26 (1987).

    Article  CAS  PubMed  Google Scholar 

  44. Johnstone, B.M., Patuzzi, R., Syka, J. & Sykova, E. Stimulus-related potassium changes in the organ of Corti of guinea-pig. J. Physiol. 408, 77–92 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Konishi, T., Harick, P.E. & Walsh, P.J. Ion transport in guinea pig cochlea. I. Potassium and sodium transport. Acta Otolaryngol. 86, 22–34 (1978).

    Article  CAS  PubMed  Google Scholar 

  46. Wada, J., Kambayashi, J., Marcus, D.C. & Thalmann, R. Vascular perfusion of the cochlea: effect of potassium-free and rubidium-substituted media. Arch. Otorhinolaryngol. 225, 79–81 (1979).

    Article  CAS  PubMed  Google Scholar 

  47. Kikuchi, T., Kimura, R.S., Paul, D.L. & Adams, J.C. Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat. Embryol. 191, 101–118 (1995).

    Article  CAS  Google Scholar 

  48. Spicer, S.S. & Schulte, B.A. Evidence for a medial K+ recycling pathway from inner hair cells. Hear. Res. 118, 1–12 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Schulte, B.A. & Steel, K.P. Expression of α and β subunit isoforms of Na,K-ATPase in the mouse inner ear and changes with mutations at the Wv or Sld loci. Hear. Res. 78, 65–76 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Kubisch, C. et al. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96, 437–446 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Marcotti, W. & Kros, C.J. Developmental expression of the potassium current IK,n contributes to maturation of mouse outer hair cells. J. Physiol. 520, 653–660 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Housley, G.D. & Ashmore, J.F. Ionic currents of outer hair cells isolated from the guinea pig cochlea. J. Physiol. 448, 73–98 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jentsch, T.J. Neuronal KCNQ potassium channels: physiology and role in disease. Nature Rev. Neurosci. 1, 21–30 (2000).

    Article  CAS  Google Scholar 

  54. Kharkovets, T. et al. KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc. Natl. Acad. Sci. USA 97, 4333–4338 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Beisel, K.W., Nelson, N.C., Delimont, D.C. & Fritzsch, B. Longitudinal gradients of KCNQ4 expression in spiral ganglion and cochlear hair cells correlate with progressive hearing loss in DFNA2. Brain Res. Mol. Brain Res. 82, 137–149 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Kelsell, D.P. et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387, 80–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Xia, J. et al. Mutations in the gene encoding gap junction protein β-3 associated with autosomal dominant hearing impairment. Nature Genet. 21, 363–369 (1998).

    Google Scholar 

  58. Grifa, A. et al. Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nature Genet. 23, 16–18 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Wangemann, P. Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells. Hear. Res. 90, 149–157 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Dixon, M.J. et al. Mutation of the Na-K-Cl co-transporter gene Slc12a2 results in deafness in mice. Hum. Mol. Genet. 8, 1579–1584 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Delpire, E., Lu, J., England, R. & Thorne, T. Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nature Genet. 22, 192–195 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Flagella, M. et al. Mice lacking the basolateral Na-K-2Cl cotransporter have impaired epithelial chloride secretion and are profoundly deaf. J. Biol. Chem. 274, 26946–26955 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Vetter, D.E. et al. Inner ear defects induced by null mutation of the isk gene. Neuron 17, 1251–1264 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Tyson, J. et al. IsK and KvLQT1: Mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome. Hum. Mol. Genet. 6, 2179–2185 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Letts, V.A. et al. A new spontaneous mouse mutation in the Kcne1 gene. Mamm. Genome 11, 831–835 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Karet, F.E. et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nature Genet. 21, 84–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Everett, L.A. et al. Pendred syndrome is caused by mutations in a putative sulphate transporter (PDS). Nature Genet. 17, 411–422 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Li, X.C. et al. A mutation in PDS causes non-syndromic recessive deafness. Nature Genet. 18, 215–217 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Everett, L.A., Morsli, H., Wu, D.K. & Green, E.D. Expression pattern of the mouse ortholog of the Pendred's syndrome gene ( Pds ) suggests a key role for pendrin in the inner ear. Proc. Natl. Acad. Sci. USA 96, 9727–9732 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

Supported by the MRC, Defeating Deafness and EC contract QLG2-CT-1999-00988.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen P. Steel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steel, K., Kros, C. A genetic approach to understanding auditory function. Nat Genet 27, 143–149 (2001). https://doi.org/10.1038/84758

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84758

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing