Skip to main content
Log in

Hypoglycemic Brain Damage

  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Hypoglycemia was long considered to kill neurons by depriving them of glucose. We now know that hypoglycemia kills neurons actively rather than by starvation from within. Hypoglycemia only causes neuronal death when the EEG becomes flat. This usually occurs after glucose levels have fallen below 1 mM (18 mg/dL) for some period. At that time abrupt energy failure occurs, the excitatory amino acid aspartate is massively released into the limited brain extracellular space and floods the excitatory amino acid receptors located on neuronal dendrites. Calcium fluxes occur and membrane breaks in the cell lead rapidly to neuronal necrosis. Significant neuronal necrosis occurs after 30 min of electrocerebral silence. Other neurochemical changes include energy depletion to roughly 25% of control, phospholipase and other enzyme activation, tissue alkalosis, and a tendency for all cellular redox systems to shift towards oxidation. Hypoglycemia often differs from ischemia in its neuropathologic distribution, in that necrosis of the dentate gyrus of the hippocampus can occur and a predilection for the superficial layers of the cortex is sometimes seen. Cerebellum and brainstem are universally spared in hypoglycaemic brain damage. Hypoglycemia constitutes a unique metabolic brain insult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abdul-Rahman, A., Agardh, C.-D., and Siesjö, B.K. (1980). Local cerebral blood flow in the rat during se-vere hypoglycemia and in the recovery period following glucose injection. Acta Physiol. Scand. 109:307–314.

    PubMed  Google Scholar 

  • Abdul-Rahman, A., and Siesjö, B.K. (1980). Local cerebral glucose consumption during insulin-induced hypo-glycemia, and in the recovery period following glucose administration. Acta Physiol. Scand. 110:149–159.

    PubMed  Google Scholar 

  • Agardh, C.-D., Carlsson, A., Lindqvist, M., and Siesjö, B.K. (1979). The effect of pronounced hypoglycemia on monoamine metabolism in rat brain. Diabetes 28:804–809.

    PubMed  Google Scholar 

  • Agardh, C.-D., Chapman, A.G., Nilsson, B., and Siesjö, B.K. (1981a). Endogenous substrates utilized by rat brain in severe insulin-induced hypoglycemia. J. Neurochem. 36:490–500.

    PubMed  Google Scholar 

  • Agardh, C.D., Chapman, A.G., Pelligrino, D., and Siesjö, B.K. (1982). Influence of severe hypoglycemia on mitochondrial and plasma membrane function in rat brain. J. Neurochem. 38:662–668.

    PubMed  Google Scholar 

  • Agardh, C.-D., Folbergrová, J., and Siesjö, B.K. (1978). Cerebral metabolic changes in profound insulin-induced hypoglycemia, and in the recovery period following glucose administration. J. Neurochem. 31:1135–1142.

    PubMed  Google Scholar 

  • Agardh, C.-D., Kalimo, H., Olsson, Y., and Siesjö, B.K. (1981b). Hypoglycemic brain injury: Metabolic and structural findings in rat cerebellar cortex during profound insulin-induced hypoglycemia and in the recovery period following glucose administration. J. Cereb. Blood Flow Metab. 1:71–84.

    PubMed  Google Scholar 

  • Agardh, C.-D., and Siesjö, B.K. (1981). Hypoglycemic brain injury: Phospholipids, free fatty acids, and cyclic nucleotides in the cerebellum of the rat after 30 and 60 minutes of severe insulin-induced hypoglycemia. J. Cereb. Blood Flow Metab. 1:267–275.

    PubMed  Google Scholar 

  • Agardh, C.D., Westerberg, E., and Siesjö, B.K. (1980). Severe hypoglycemia leads to accumulation of arachidonic acid in brain tissue. Acta Physiol. Scand. 109:115–116.

    PubMed  Google Scholar 

  • Auer, R.N., Hugh, J., Cosgrove, E., Curry, B. (1989). Neuropathologic findings in three cases of profound hypoglycemia. Clin. Neuropathol. 8:63–68.

    PubMed  Google Scholar 

  • Auer, R.N., Kalimo, H., Olsson, Y., and Wieloch, T. (1985). The dentate gyrus in hypoglycemia. Pathology implicating excitotoxin-mediated neuronal necrosis. Acta Neuropathol. (Berl.) 67:279–288.

    Google Scholar 

  • Auer, R.N., Olsson, Y., and Siesjö, B.K. (1984a). Hypoglycemic brain injury in the rat. Correlation of density of brain damage with the EEG isoelectric time: A quantitative study. Diabetes 33:1090–1098.

    PubMed  Google Scholar 

  • Auer, R.N., Wieloch, T., Olsson, Y., and Siesjö, B.K. (1984b). The distribution of hypoglycemic brain damage. Acta Neuropathol. (Berl.) 64:177–191.

    Google Scholar 

  • Baker, A.B. (1938). Cerebral lesions in hypoglycemia. II. Some possibilities of irrevocable damage from insulin shock. Arch. Pathol. 26:765–776.

    Google Scholar 

  • Behar, K.L., den Hollander, J.A., Petroff, O.A.C., Hetherington, H.P., Prichard, J.W., and Shulman, R.G. (1985). Effect of hypoglycemic encephalopathy upon amino acids, high-energy phosphates, and pHi in the rat brain in vivo: Detection by sequential 1 H and 31 P NMR spectroscopy. J. Neurochem. 44:1045–1055.

    PubMed  Google Scholar 

  • Eisenberg, S., and Seltzer, H.S. (1962). The cerebral metabolic effects of acutely induced hypoglycemia in human subjects. Metabolism 11:1162–1168.

    Google Scholar 

  • Fazekas, J.F., Alman, R.W., and Parrish, A.E. (1951). Irreversible posthypoglycemic coma. Am. J. Med. Sci. 222:640–643.

    PubMed  Google Scholar 

  • Feise, G., Kogure, K., Busto, R., Scheinberg, P., and Reinmuth, O. (1976). Effect of insulin hypoglycemia upon cerebral energy metabolism and EEG activity in the rat. Brain Res. 126:263–280.

    Google Scholar 

  • Harris, R.J., Wieloch, T., Symon, L., and Siesjö, B.K. (1984). Cerebral extracellular calcium activity in severe hypoglycemia: Relation to extracellular potassium and energy state. J. Cereb. Blood Flow Metab. 4:187–193.

    PubMed  Google Scholar 

  • Kalimo, H., and Olsson, Y. (1980). Effect of severe hypoglycemia on the human brain. Acta Neurol. Scand. 62:345–356.

    PubMed  Google Scholar 

  • LaManna, J.C., and Harik, S.I. (1985). Regional comparisons of brain glucose influx. Brain Res. 326:299–305.

    PubMed  Google Scholar 

  • Mayer-Gross, W. (1951). Insulin coma therapy of schizophrenia: Some critical remarks on Dr. Sakel's report. Ment. Sci. 97:132–135.

    Google Scholar 

  • McIlwain, H. (1953). Glucose level, metabolism, and response to electrical impulses in cerebral tissues from man and laboratory animals. Biochem. J. 55:618–624.

    PubMed  Google Scholar 

  • Nemoto, E.M., and Hoff, J.T. (1974). Lactate uptake and metabolism by brain during hyperlactatemia and hypoglycemia. Stroke 5:48–53.

    PubMed  Google Scholar 

  • Norberg, K., and Siesjö, B.K. (1976). Oxidative metabolism of the cerebral cortex of the rat in severe insulin induced hypoglycemia. J. Neurochem. 26:345–352.

    PubMed  Google Scholar 

  • Pelligrino, D., and Siesjö, B.K. (1981). Regulation of extra-and intracellular pH in the brain in severe hypo-glycemia. J. Cereb. Blood Flow Metab. 1:85–96.

    PubMed  Google Scholar 

  • Sakel, M. (1933). Neue Behandlungsart Schizophreniker und verwirrter Erregter. Wien. Klin. Wchnschr. 46:1372–1373.

    Google Scholar 

  • Sakel, M. (1934). Schizophreniebehandlung mittels Insulin-Hypoglykämie sowie hypoglykämischen Schocks. Wien. Med. Wchnschr. 84:1211.

    Google Scholar 

  • Sakel, M. (1937). The methodical use of hypoglycemia in the treatment of psychoses. Am.J.Psychiatr y 94:111–129.

    Google Scholar 

  • Sandberg, M., Butcher, S.P., and Hagberg, H. (1986). Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: In vivo dialysis of the rat hippocampus. J. Neurochem. 47:178–184.

    PubMed  Google Scholar 

  • Sandberg, M., Nyström, B., and Hamberger, A. (1985). Metabolically derived aspartate—Elevated extracellular levels in vivo in iodoacetate poisoning. J. Neurosci. Res. 13:489–495.

    PubMed  Google Scholar 

  • Sloviter, H.A., Shimkin, P., and Suhara, K. (1966). Glycerol as a substrate for brain metabolism. Nature 210:1334–1336.

    PubMed  Google Scholar 

  • Terbrüggen, A. (1932). Anatomische Befunde bei spontaner Hypoglykämie infolge multipler Pankreasinselade-nome. Beitr. z. Path. Anat. u. Allg. Path. 88:37–59.

    Google Scholar 

  • Wieloch, T., Harris, R.J., Symon, L., and Siesjö, B.K. (1984). Influence of severe hypoglycemia on brain extra-cellular calcium and potassium activities, energy and phospholipid metabolism. J. Neurochem. 43:160–168.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auer, R.N. Hypoglycemic Brain Damage. Metab Brain Dis 19, 169–175 (2004). https://doi.org/10.1023/B:MEBR.0000043967.78763.5b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MEBR.0000043967.78763.5b

Navigation