Isozymes of the Na+/K+-ATPase

https://doi.org/10.1016/0304-4157(89)90019-1Get rights and content

First page preview

First page preview
Click to open first page preview

Reference (295)

  • AbeywardenaM.Y. et al.

    Biochim. Biophys. Acta

    (1983)
  • AddisonR.

    J. Biol. Chem.

    (1986)
  • AhmedK. et al.

    Biochim. Biophys. Acta

    (1964)
  • AkeraT. et al.

    Eur. J. Pharmacol.

    (1985)
  • AmoryA. et al.

    J. Biol. Chem.

    (1980)
  • AtterwillC.K. et al.

    Neurosci.

    (1985)
  • AtterwillC.K. et al.

    Toxicology

    (1987)
  • AtterwillC.K. et al.

    Biochem. Pharmacol.

    (1987)
  • AtterwillC.K. et al.

    Mol. Cell. Endocrinol.

    (1985)
  • BallW.J. et al.

    Biochim. Biophys. Acta

    (1986)
  • BallW.J. et al.

    Biochim. Biophys. Acta

    (1982)
  • BenadeL.E. et al.

    Biochem. Biophys. Res. Commun.

    (1986)
  • BrandlC.J. et al.

    Cell

    (1986)
  • BrownL. et al.

    Biochem. Pharmacol.

    (1983)
  • BrownT.A. et al.

    Biochim. Biophys. Acta

    (1987)
  • CaspersM.L. et al.

    Brain Res.

    (1987)
  • CenaV. et al.

    J. Biol. Chem.

    (1987)
  • CharlemagneD. et al.

    Biochem. Pharmacol.

    (1980)
  • CharlemagneD. et al.

    J. Biol. Chem.

    (1986)
  • CharlemagneD. et al.

    J. Biol. Chem.

    (1987)
  • ChurchillL. et al.

    Biochem. Biophys. Res. Commun.

    (1979)
  • Coca-PradosM. et al.

    Biochem. Biophys. Res. Commun.

    (1987)
  • deJongW.W. et al.

    Biochem. Biophys. Res. Commun.

    (1978)
  • DesnuelleC. et al.

    FEBS Lett.

    (1985)
  • DeVriesG.H. et al.

    J. Biol. Chem.

    (1982)
  • DeVriesG.H. et al.

    Brain Res.

    (1978)
  • DoucetA. et al.

    J. Biol. Chem.

    (1986)
  • EmanuelJ.R. et al.

    J. Biol. Chem.

    (1988)
  • EnglishL.H. et al.

    J. Biol. Chem.

    (1985)
  • ErdmannE. et al.

    Biochim. Biophys. Acta

    (1973)
  • ErdmannE. et al.

    Biochim. Biophys. Acta

    (1973)
  • ErdmannE. et al.

    Biochem. Pharmacol.

    (1980)
  • ErdmannE. et al.

    Trends Pharmacol. Sci.

    (1985)
  • EsmannM. et al.

    Biochim. Biophys. Acta

    (1985)
  • FambroughD.M.

    Trends in Neurosci.

    (1988)
  • FambroughD.M. et al.

    J. Biol. Chem.

    (1983)
  • FehlmannM. et al.

    J. Biol. Chem.

    (1981)
  • FelsenfeldD.P. et al.

    J. Biol. Chem.

    (1988)
  • FisherJ.A. et al.

    J. Biol. Chem.

    (1984)
  • FisherJ.A. et al.

    J. Biol. Chem.

    (1986)
  • ForestC. et al.

    Biochim. Biophys. Res. Commun.

    (1982)
  • FukushimaY. et al.

    J. Biol. Chem.

    (1980)
  • GenyB. et al.

    Biochim. Biophys. Acta

    (1982)
  • GodfraindT. et al.

    Biochem. Pharmacol.

    (1980)
  • GrisarT. et al.

    Brain Res.

    (1983)
  • GrisarT. et al.

    Brain Res.

    (1979)
  • GrisarT. et al.

    FEBS Lett.

    (1978)
  • HansenO.

    Biochim. Biophys. Acta

    (1976)
  • HaraY. et al.

    FEBS Lett.

    (1988)
  • HartW.M. et al.

    J. Biol. Chem.

    (1973)
  • Cited by (928)

    • Inhibition of the Na<sup>+</sup>/K<sup>+</sup>-ATPase by cardiac glycosides suppresses expression of the IDO1 immune checkpoint in cancer cells by reducing STAT1 activation

      2022, Journal of Biological Chemistry
      Citation Excerpt :

      There are four isoforms of the α subunit encoded by genes ATP1A1 (α1), ATP1A2 (α2), ATP1A3 (α3), and ATP1A4 (α4), α1 being the most widely expressed across different tissues (36, 37, 39). The α subunit is a target of most NKA inhibitors, including cardiac glycosides, a well-characterized class of NKA functional inhibitors including ouabain, digoxin, digitoxin, and bufalin, among others (36, 40–43). To explore the role of NKA in IDO1 regulation, we performed siRNA-mediated knockdown of ATP1A1.

    • Mammals to membranes: A reductionist story

      2021, Comparative Biochemistry and Physiology Part - B: Biochemistry and Molecular Biology
    • Postnatal development in the rat: Changes in Na<sup>+</sup> flux, sodium pump molecular activity and membrane lipid composition

      2020, Mechanisms of Development
      Citation Excerpt :

      However in adult mammals, organs with very different isoform profiles e.g. skeletal muscle and brain share very similar molecular activities (Else et al., 1996). In kidney there is only one isoform present α1 throughout development (Sweadner, 1989), therefore differences in molecular activity between neonates and adults cannot be due to different isozymes. Previous work in endothermic versus ectothermic vertebrates (Else and Hulbert, 1987; Hulbert and Else, 1990) has shown that high levels of Na+ flux, molecular activity and tissue metabolism (Else, 1991; Wu et al., 2004; Else and Wu, 1999; Else, 2016; Wu et al., 2001) are associated with increased membrane polyunsaturation.

    • Endogenous cardiotonic steroids and cardiovascular disease, where to next?

      2020, Cell Calcium
      Citation Excerpt :

      In the heart, FXYD protein named phospholemman modulates NKA activity in response to kinase/phosphatase mediated stimuli [18,21–24]. NKA functional unit is made up of α and β macromolecular complex with four α (α1, α2, α3 and α4), three β isoforms (β1, β2 and β3) [25,26] and a FXYD protein, allowing a formation of a number of different NKA isozymes with distinct transport and pharmacological properties [27]. Whether multiple isozyme combinations exist within the same heart, whether they demarcate distinct chambers or even distinct topologies within a single cardiomyocyte, is not known and warrants investigation.

    View all citing articles on Scopus
    View full text