Quantitative analysis of infant EEG development during quiet sleepAnalyse quantitative du développement de l'EEG du nouveau-ne au cours du sommeil calme

https://doi.org/10.1016/0013-4694(77)90260-7Get rights and content

Abstract

A quantitative evaluation of central cortical EEG activity during quiet sleep was undertaken in normal infants followed from 1 to 24 weeks of age. Bilateral (C3-T3, C4-T4) EEG activity was recorded continuously on magnetic tape during 12-h polygraphic monitoring sessions at 1, 4, 8, 12, 16 and 24 weeks of age. Power-spectral densities were calculated from three independent 10 min quiet sleep samples from the first, middle and last epochs of the night. Data were calibrated, log transformed and sorted into five sequential 4 c/sec frequency bands between 0–19 c/sec. Analysis focused upon the distribution of power in these bands as a function of time of night, hemisphere and age.

A time of night effect was found only between 8 and 16 weeks of age. During this period the initial sleep epoch showed a significant increase in low frequency power. This was interpreted as an age-specific sleep deprivation effect related to experimental manipulation of the infant. No significant developmental difference in power distribution was found between hemispheres, although specific asymmetries were noted. All frequency bands changed significantly with age. Lower frequencies (0–3 and 4–7 c/sec) increased in power with age, 0–3 c/sec increasing abruptly from 1 to 8 weeks and 4–7 c/sec showing a more delayed increment after 12 weeks of age. Power in the higher frequency bands (8–11, 12–15 and 16–19 c/sec decreased between 1 and 4 weeks and then increased significantly at 12 weeks and older. The decrease at 4 weeks and increase at 12 weeks was most marked for the 12–15 c/sec band, and was interpreted in terms of the development of thalamocortical mechanisms related to the generation of EEG sleep spindles.

Résumé

Une évaluation quantitative de l'activé EEG corticale des régions centrales au cours du sommeil calme a été entreprise chez des nourrissons normaux suivis à l'âge de 1 à 24 semaines. L'activité EEG bilatérale (C3—T3, C4—T4) a été enregistrée en continu sur bande magnétique pendant des sessions d'enregistrements polygraphiques de 12 h aux âges de 1, 4, 8, 12, 16 et 24 semaines. Les densités spectrales ont été calculées sur 3 échantillons indépendants de 10 min de sommeil calme, lors du début, du milieu et de la fin de la nuit. Les données ont été calibrées, mises en échelle logarithmique et sorties en 5 bandes de fréquence séquentielle de 4 c/sec entre 0 et 19 c/sec. L'analyse est centrée sur la distribution de puissance dans ces bandes de fréquence en fonction du moment de la nuit, de l'hémisphère et de l'âge.

L'effet du moment de la nuit s'observe seulement entre 8 et 16 semaines. Au cours de cette période, la première époque de sommeil montre une augmentation significative de puissance dans les basses fréquences. Ceci est interprété comme un effet de privation de sommeil spécifique à l'âge, et lié à la manipulation expérimentale du nourrisson. Aucune différence significative de distribution de puissance liée à l'âge n'a été observée entre les deux hémisphères, bien que des asymétries spécifiques aient été notées. Les bandes de fréquence changent significativement avec l'âge. Les fréquences les plus basses (0–3 et 4–7 c/sec) augmentent en puissance avec l'âge, les fréquences de 0 à 3 c/sec augmentant de façon abrupte entre 1 et 8 semaines et celle de 4 à 7 c/sec montrant une augmentation plus tardive après la 12ème semaine. La puissance d'ondes de fréquence plus élevées (8–11, 12–15 et 16–19 c/sec) diminue entre 1 et 4 semaines puis augmente de façon significative à la 12ème semaine et plus tard. La diminution de puissance à 4 semaines et son augmentation à 12 semaines sont maximales pour la bande de 12–15 c/sec et interprêtées en termes de développement des mécanismes thalamo-corticaux liés à la production des spindles EEG de sommeil.

References (53)

  • A.B. Bergman

    Sudden infant death syndrome in King County, Washington

  • R. Bickford et al.

    The compressed spectral array (CSA) a pictorial EEG

  • R.B. Blackman et al.

    The measurement of power spectra

  • W.H. Bridger

    Sensory habituation and discrimination in the human neonate

    Amer. J. Psychiat.

    (1961)
  • C.D. Clemente et al.

    Cortical synchronization and sleep patterns in acute restrained and chronic behaving cats induced by basal forebrain stimulation

    Electroenceph. clin. Neurophysiol.

    (1963)
  • O.D. Creutzfeldt

    The neuronal generation of the EEG

  • H. Davis et al.

    Human brain potentials during the onset of sleep

    J. Neurophysiol.

    (1938)
  • C. Dreyfus-Brisac

    The electroencephalogram of the premature infant and full-term newborn: normal and abnormal development of waking and sleeping patterns

  • C. Dreyfus-Brisac et al.

    Veille sommeilet reactivite sensurielle chez le premature et le nouveau-ná. Activite electrique cerebrale du nourrisson

    Electroenceph. clin. Neurophysiol.

    (1956)
  • R.J. Ellingson

    The study of brain electril activity of infants

    Advan. Child Develop. Behav.

    (1967)
  • P. Froggatt et al.

    Sudden unexpected death in infants (‘cot death’)

    Med. J.

    (1971)
  • D. Galin et al.

    Lateral specialization of cognitive mode: an EEG study

    Psychophysiology

    (1972)
  • I. Hagne

    Development of the EEG in normal infants during the first year of life

    Acta Paediat. Scand.

    (1972)
  • R.M. Harper et al.

    Polygraphic studies of normal infants during the first six months of life. I. Heart rate and variability as a function of state

    Pediat. Res.

    (1976)
  • V. Havlicek et al.

    EEG frequency spectrum characteristics of sleep states in full-term and preterm infants

    Neuropädiatrie

    (1975)
  • T. Hellbrügge

    The development of circadian rhythms in infants

  • Cited by (69)

    • Season is related to the slow wave and sigma activity of infants and toddlers

      2022, Sleep Medicine
      Citation Excerpt :

      In adults, SWA predominates in the beginning of sleep, when homeostatic sleep pressure is at its highest level, and diminishes towards the end of the night [5,10]. In infants, the temporal domination of SWA or deep sleep in the beginning of sleep emerges at one to four months of age [11–15]. In infants and young children, the SWA maxima locates in the posterior regions of the brain [16–19].

    • Developmental profiles of infant EEG: Overlap with transient cortical circuits

      2012, Clinical Neurophysiology
      Citation Excerpt :

      These techniques revealed frequency dependent differences in power with sleep state (Curzi-Dascalova et al., 1988; Parmelee, 1969) and sleep position (Sahni et al., 2005), variance in power with clinical status (Scher, 1994), and differences between term and preterm infants (Scher et al., 1994a,b). Other investigators have characterized developmental changes in EEG during infancy, a notable study by Sterman et al. (1977) analyzed EEG data from birth to 24 weeks of age. They described a steady increase in low frequency power with postmenstrual age (PMA), while higher frequency power exhibited a “dip” from 40 to 44 weeks PMA.

    • Characteristics of sleep EEG power spectra in healthy infants in the first two years of life

      2011, Clinical Neurophysiology
      Citation Excerpt :

      To date, the description of sleep EEG power spectra of infants has been fragmented and visually qualitative. In addition, studies have been limited to small sample sizes (Jenni et al., 2003; Parmelee, 1969; Schulte and Bell, 1973), cross-sectional design (Samson-Dollfus et al., 1983; Schulte and Bell, 1973), duration less than the full first year of life (Jenni et al., 2003; Parmelee, 1969; Samson-Dollfus et al., 1983; Schechtman et al., 1994; Scher et al., 1994), analysis of specific sleep stages or specific bandwidths (Schechtman et al., 1994; Sterman et al., 1977), and provision of either graphical (Jenni et al., 2003; Schulte and Bell, 1973) or quantitative (Samson-Dollfus et al., 1983) description of sleep EEG power spectra. For example, the appearance of sleep spindles in infants corresponds with a noticeable peak in the QS/NREM N2 power spectra in the sigma (11–15 Hz) bandwidth (Jenni et al., 2003).

    • Ontogeny of EEG sleep from neonatal through infancy periods

      2011, Handbook of Clinical Neurology
      Citation Excerpt :

      A short list of these unique electrographic/polysomnographic behaviors include a shorter sleep cycle, prominent EEG delta rhythms in different regional locations, intra- and interhemispheric electrographic asynchrony, discrete neonatal waveform patterns (i.e., delta brush and theta burst patterns), a high percentage of periodic breathing, a greater number and heterogeneity of REMs, and unique motor patterns that reflect fetal postural reflexes which precede the expression of more sophisticated developmental movement patterns. Previous neonatal sleep studies initially applied automated techniques to assess functional brain maturation, using analyses that were based on assumptions of linearity, without consideration of time-dependent changes (Havlicek et al., 1975; Giaquinto et al, 1977; Sterman et al., 1977; Lombroso, 1979; Willekens et al., 1984; Connell et al., 1987; Bes et al., 1988; Eyre et al., 1988; Kuks et al., 1988). The preferred methodological approach has been fast Fourier transform analyses, studied initially with full-term neonates (Ktonas et al., 1995; Witte et al., 1997; Lehtonen et al., 1998; Eiselt et al., 2001; Field et al., 2002), followed by more recent reports in preterm infants (Sawaguchi et al., 1996; Eiselt et al., 1997; Myers et al., 1997; Holthausen et al., 2000; Schramm et al., 2000; Kuhle et al., 2001; Vanhatalo et al., 2002).

    View all citing articles on Scopus

    This research was supported by the Veterans Administration, the Los Angeles Country Hospital system and by the National Institute of Child Health and Human Development Contracts Nos. NO1-HD-2-2777 and HD4-2810.

    1

    We also wish to thank Mrs. Kazuko Arakawa for her important contribution to the statistical analysis of the data presented here.

    View full text