Renal ultrasonography not required in babies with isolated minor ear anomalies

Sanjeev A Deshpande & Helen Watson

Royal Shrewsbury Hospital

Corresponding author:
S A Deshpande
Royal Shrewsbury Hospital
Mytton Oak Road
Shrewsbury
SY3 8XQ

Telephone: 01743 261329
Fax : 01743 261 444
Email: deshpande@which.net

Key words: preauricular skin tags, external ear, renal anomalies, ultrasound
Abstract

Aim: To determine whether infants with isolated minor anomalies of external ear are at an increased risk of renal malformations.

Methods: Consecutive infants with isolated minor anomalies of external ear (preauricular skin tags, preauricular sinuses, ear pits and misshapen pinnae) were offered renal ultrasonography by experienced sonographers over a 41 months period. The prevalence of renal anomalies in such infants was compared to that detected on routine fetal scanning during the same period.

Results: Ninety six among 13,136 liveborn infants (7.3/1000, 95% CI 5.9-8.9) were noted to have isolated minor ear anomalies on routine neonatal examination, with preauricular skin tags being the commonest (85%). Ninetyone (95%) infants underwent renal sonography at a mean (SD) age of 40 (19.6) days. Only 1 infant (1.1% 0.03-5.9) had transient unilateral pyelectasia. During the same period, non-syndromic renal anomalies were found in 0.64% (0.52-0.73) of infants, a prevalence no different to that among infants with minor ear anomalies (p=0.44).

Conclusions: Routine renal imaging is not warranted in infants with such minor external ear anomalies unless accompanied by other systemic malformations.
Introduction

Minor anomalies of external ear are found in 5-10 per 1000 newborn infants, with preauricular skin tags being the commonest\(^1\).\(^2\) Whilst there is a general consensus about the need to search for renal malformations in babies with gross or syndromic ear abnormalities\(^3\)-\(^4\), the need for such evaluations in infants with isolated minor ear anomalies is controversial\(^5\). The published studies are generally underpowered, often lack appropriate controls, and have given variable results, sometimes even from similar sociodemographic populations\(^2\)-\(^4\),\(^6\)-\(^10\). Moreover, none of the evaluations report on the frequency of any extra abnormalities detected by such sonographic surveillance on a background of now routine prenatal sonography.

We undertook this study to assess the yield of routine renal ultrasonography for detection of urinary tract abnormalities in infants with isolated minor external ear anomalies, in the era of routine fetal anomaly scanning.

Methods

The study included all infants born at the Royal Shrewsbury hospital between 1 May 2000 and 31 December 2003. Infants in whom isolated minor anomalies of external ear (preauricular skin tags, preauricular sinuses, ear pits and misshapen pinnae) were detected on routine neonatal examination were eligible for inclusion in the study. Such infants were offered renal ultrasonography, in addition to hearing assessment, and cosmetic surgery referral. All the postnatal sonographic examinations were performed by a team of a consultant radiologist and three experienced ultrasonographers, who were unaware of the results of prenatal screening. Infants with initial abnormal scans underwent further imaging as clinically indicated.

During this period, a routine anomaly scan was offered to all pregnant women at around 20 weeks of gestation. Fetuses showing renal abnormalities including pyelectasia (>5 mm anteroposterior diameter in a transverse plane) were screened again at 32 weeks, and underwent postnatal renal sonography at 1 and 6 weeks of age. Further renal imaging studies were carried out as clinically indicated. We compared the prevalence of renal anomalies detected in infants with external ear anomalies to that found on routine prenatal sonography using chi-square test. The study was approved by the local research ethics committee.

Results

During the study period, 13,136 infants were born at our hospital. Isolated minor anomalies of external ears were noted in 96 infants (7.3/1000 live births, 95%CI, 5.9-8.9) during routine neonatal examination (Table).
Table: External ear anomalies

<table>
<thead>
<tr>
<th>Nature of anomaly</th>
<th>N</th>
<th>N (%) undergoing renal sonography</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-auricular skin tags</td>
<td>79</td>
<td>75</td>
<td>74</td>
</tr>
<tr>
<td>Left</td>
<td>43</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>28</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Bilateral</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Pre-auricular sinus</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Pre-auricular pit</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Misshapen pinnae</td>
<td>4</td>
<td>4*</td>
<td>4</td>
</tr>
<tr>
<td>Pre-auricular tags + misshapen pinna</td>
<td>2</td>
<td>1*</td>
<td>1</td>
</tr>
<tr>
<td>Pre-auricular sinus + tag</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>96</td>
<td>91</td>
<td>90</td>
</tr>
</tbody>
</table>

* Hypoplastic ear (2), protruding ear (1), bilateral ear nodules with curled helices (1), prominent large ear with skin tag (1).

One infant moved out of the county soon after birth, and 91 (95%) of the remaining eligible infants underwent renal sonography at a mean (SD) age of 40 (19.6) days after birth. The mean (SD) gestational age and birth weight of these infants were 39.5 (1.34) weeks and 3452 (508.4) g, respectively. Fortytwo (46%) were boys. Two infants had unilateral undescended testis, and one had glandular hypospadias.

The only renal abnormality found on abdominal ultrasonography was unilateral renal pelvic dilatation in 1 infant (1.1%, 0.03-5.9). Prenatal anomaly scan was unremarkable in this infant. There was no evidence of vesico-ureteric reflux or pelvi-ureteric junction obstruction on further imaging, and the pyelectasia resolved spontaneously by 14 months of age. Two other infants showed transient ovarian cysts.

During the same period, non-syndromic renal abnormalities were detected in 94 live born infants through prenatal screening (0.64%, 0.52-0.73). These included renal pyelectesia (n=79), multicystic dysplastic kidneys (n=9), posterior urethral valves (n=2), and polycystic kidney disease, bilateral renal hypoplasia, single kidney, and simple renal cyst in one infant each. The prevalence of renal abnormalities among infants with minor external ear anomalies was no different to that found on routine prenatal screening (p=0.44)

Discussion

The prevalence of minor ear anomalies among the neonates in our study was similar to previous reports, confirming these as relatively common congenital anomalies. We however did not find any significant increase in the prevalence of renal tract
abnormalities in such infants. This finding is in accordance with three case series of infants with minor external ear anomalies which found no increase in the incidence of renal malformations. These latter studies however were of small sizes and lacked controls. In a prospective study from Israel, Kugelman et al found minor renal abnormalities in 2 of 92 (2.2%, 0.2-7) infants with isolated pre-auricular skin tags or pits over 4 years compared to 4 among 95 control infants ((4.2%, 1.1-10; p=1.0)). On the other hand, another study from the same country detected renal abnormalities in 6 of 70 (8.6%, 2.2-12.4) infants with isolated preauricular tags over 7 years, compared to none (0-3.6) in a control group of 69 infants (p<0.02). In a study of 34 children (mean age at evaluation 4.7 years with only 2 neonates), 3 (8.8%, 0.6-8) had renal abnormalities. Both the latter studies however did not have any renal malformations in the control groups unlike in the general population where significant renal anomalies occur in 1.4% of infants. Leung and Robson found renal anomalies in 3 of 69 (4.3%) infants with preauricular sinuses but did not include any infant with preauricular skin tags.

The lack of excess renal abnormalities in our study is not surprising since embryonic development of the ears and kidneys occurs at different ages and at different rates. Any association between the abnormalities of these two organs is therefore unlikely to be due to a single insult but rather represents the effects of a common gene or a prolonged toxic insult. Increased frequency of clinically significant renal anomalies in association with ear malformations when the latter are a constituent of multiple congenital anomaly syndromes such as CHARGE association, branchio-oto-renal (BOR) syndrome, Townes-Brocks syndrome, or in diabetic embryopathy, supports this contention.

In summary, our study provides incremental support to the notion that isolated minor abnormalities of external ears are not associated with an increased risk of significant renal anomalies, and that routine postnatal ultrasonography is not required except when such anomalies are associated with other malformations.
Acknowledgements
We wish to thank Jenny Scott for help with collection of the data.

Funding
None

Competing interests
None

Licence statement
The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in Archives of Disease in Childhood editions and any other BMJPGL products to exploit all subsidiary rights, as set out in our licence (http://adc.bmjjournals.com/misc/ifora/licenceform.shtml).

What is already known on this topic

• Minor anomalies of external ears are relatively common in newborn infants.
• There is controversy about the need for routine renal imaging in infants with such anomalies.

What this study adds

• There was no significant increase in the prevalence of renal tract abnormalities in infants with isolated minor ear anomalies as compared to that found on routine fetal sonography.
• Routine renal ultrasonography is not warranted in infants with such minor anomalies unless accompanied by other systemic malformations.
References

Renal ultrasonography not required in babies with isolated minor ear anomalies

Sanjeev A Deshpande and Helen Watson

Arch Dis Child Fetal Neonatal Ed published online October 13, 2005

Updated information and services can be found at:
http://fn.bmj.com/content/early/2005/10/13/adc.2005.083329.citation

Email alerting service
These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Clinical diagnostic tests (720)
Radiology (692)
Radiology (diagnostics) (637)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/