SHORT REPORT

Quantitative ultrasound assessment of bone in preterm and term neonates

H McDevitt, C Tomlinson, M P White, S F Ahmed

There is a need to explore novel methods of assessing bone health in sick preterm infants. This study of the speed of sound in the long bones of newborn term and preterm infants shows that, in this population, this technique is not site specific and has a high degree of interobserver and intraobserver precision. The speed of sound in newborn infants is primarily dependent on gestation rather than birth weight.

PATIENTS AND METHODS

SOS was measured at a median age of 3 days (interquartile range 2–5) in 110 (60 male) infants with a median gestational age of 36 weeks (range 24–41) and median birth weight of 2565 g (680–4600) (table 1). The cohort, which included five sets of twins (four of the same sex) was arbitrarily divided into three groups by gestation at birth: A (>37 weeks), B (32–36 weeks), and C (<32 weeks).

SOS was measured using the Sunlight Omnisense 7000P (Sunlight Medical, Tel Aviv, Israel) at the distal third of the radius and the mid shaft of the tibia. The results were expressed in m/s.5 Validation studies were performed to assess: (a) intraobserver variation (multiple measurements performed at one site by the same observer in 15 infants); (b) interobserver variation (repeat measurements on two sites in six infants); (c) variation between different sites in same infant (duplicate scans at each tibia and radius in 20 infants).

XL STAT version 7.0 (Addinsoft, Paris, France) and Microsoft Excel 2000 (Microsoft Corp, Seattle, Washington, USA) were used to determine the precision of the measurements by calculating the coefficient of variation. Differences between groups were compared using the Mann-Whitney U test. Analysis of covariance was performed to assess any associations between variables.

The study was approved by the local ethics committee, and informed consent was obtained from all parents.

RESULTS

Intraobserver and interobserver variation

The intraobserver technical error of three repeat measurements at the tibia in 25 infants with a median gestational age of 37 weeks (range 33–41), as assessed by two methods, mean coefficient of variation and root mean square average, 5 was similarly low at 1.2% (1SD, 0.8%) and 1.4% respectively. The mean interobserver coefficient of variation for measurements performed by two observers at the tibia in six infants with a median gestational age of 26 weeks (range 24–32) was 1.2% (0.7%).

Intersite variation

In 20 infants with a median gestational of 37 weeks (range 26–41), measurements were performed at both tibiae and radii. The mean coefficient of variation (1SD) for measurements at all four sites was 2.4% (1.2%), left and right radius was 2.1% (1.4%), right radius and right tibia was 2.3% (1.8%), left radius and left tibia was 1.8% (1.2%), and left tibia and right tibia was 1.7% (1.8%).

Gestation and birth weight

Median tibial SOS was 3079 m/s (interquartile range 3010–3142) in group A. This was significantly higher than in group B who had a median SOS of 2994 m/s (interquartile range 3010–3115) (p = 0.008).

Abbreviations: SGA, small for gestational age; SOS, speed of sound; AGA, appropriate size for gestational age; AGA, appropriate size for gestational age; TPN, total parenteral nutrition.

Table 1 Clinical details of study cohort divided into three groups according to gestation

Group	Number of infants	Median gestation (weeks)	Male:female	Median birth weight (g)	SGA	AGA	LGA	White	Asian	Mixed race	History of PROM	Antenatal steroids	Twins	Oligohydramnios	SVD	Caesarean section	Forceps	Vaginal breech	Breast	Formula	Breast and formula	TPN (± enteral feeds)	
A	62	40 (38, 41)	37:25	3490 (3075, 1890)	49	49	9	57	4	4	1	0	1	16	16	11	1	27	23	12	9	0	11
B	28	33 (32, 34)	14:14	1890 (1590, 1080)	9	17	2	2	0	0	1	1	1	10	10	3	1	8	8	9	3	10	
C	20	28 (26, 30)	9:11	1080 (920, 1280)	2	2	1	1	1	1	1	1	1	8	8	1	1	1	1	1	1	2	

Values in parentheses are 25th,75th centiles.

Group A, born at >37 weeks; group B, born at 32–36 weeks; group C, born at <32 weeks; SGA, small for gestational age, on or below the 5th centile for weight; AGA, appropriate size for gestational age, between 10th and 90th centile for weight; LGA, large for gestational age, above 90th centile for weight; PROM, prolonged rupture of membranes; SVD, spontaneous vertex delivery; TPN, total parenteral nutrition.
between the large for gestational age and AGA infants. There were no significant differences in the five sets of twins, tibial SOS tended to be higher in the SGA (interquartile range 2790–2997) respectively (p<0.001), (SGA) and appropriate size for gestational age (AGA) infants. In group A and B, there were no significant differences between the tibial SOS for the small for gestational age and gestation had the greatest impact, followed by birth weight, and sex. Explained by gestation, birth weight, and sex (p<0.001), (fig 1A). There was no significant correlation between the birth weight and SOS in the infants in group A (fig 1B). Analysis of covariance revealed that 40% of the variability of tibial SOS was explained by gestation, birth weight, and sex (p<0.001), and gestation had the greatest impact, followed by birth weight, and then sex.

Influence of size
In group A and B, there were no significant differences between the tibial SOS for the small for gestational age (SGA) and appropriate size for gestational age (AGA) infants. However, in group C, median tibial SOS was greater in the two SGA than the AGA infants with a median SOS of 2917–3043 or group C with a median SOS of 2911 m/s (interquartile range 2816–2982) (p<0.001) (fig 1A). There was no significant correlation between the birth weight and SOS in the infants in group A (fig 1B). Analysis of covariance revealed that 40% of the variability of tibial SOS was explained by gestation, birth weight, and sex (p<0.001), and gestation had the greatest impact, followed by birth weight, and then sex.

The relative lack of an association between birth weight and SOS was reinforced, firstly, by the findings in the SGA infants who did not have a lower tibial SOS than gestation matched AGA infants, and secondly by the twin studies in which the tibial SOS was similar, and even slightly higher in the growth retarded twin.

The future application of quantitative ultrasound in assessing the bone health of infants deserves further exploration and the data in this report should prove beneficial in designing longitudinal studies.

ACKNOWLEDGEMENTS
We are grateful to the parents and babies for participating and to the generous support and encouragement of the Yorkhill Children’s Foundation, the St Charles’ Place Foundation, and the clinical staff at the three neonatal units.

Authors’ affiliations
H McDevitt, M P White, Neonatal Unit, Southern General Hospital, Glasgow, Scotland, UK
C Tomlinson, Neonatal Unit, Princess Royal Maternity Hospital, Glasgow
S F Ahmed, Bone and Endocrine Research Group, Royal Hospital For Sick Children, Yorkhill, Glasgow

Competing interests: none declared
Correspondence to: Dr Ahmed, Bone and Endocrine Research Group, Royal Hospital For Sick Children, Yorkhill, Glasgow, G3 8SJ, Scotland, UK; gcl328@clinmed.gla.ac.uk

Accepted 9 February 2005

REFERENCES
Quantitative ultrasound assessment of bone in preterm and term neonates

H McDevitt, C Tomlinson, M P White and S F Ahmed

Arch Dis Child Fetal Neonatal Ed 2005 90: F341-FF342
doi: 10.1136/adc.2004.065276

Updated information and services can be found at:
http://fn.bmj.com/content/90/4/F341

These include:

References
This article cites 5 articles, 1 of which you can access for free at:
http://fn.bmj.com/content/90/4/F341#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Child health (1515)
- Infant health (857)
- Neonatal health (928)
- Clinical diagnostic tests (720)
- Radiology (692)
- Radiology (diagnostics) (637)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/