A manual of neonatal intensive care, 4th edition

As an SHO, I bought the first edition of the Manual in 1982. It was a survival guide which provided safe certainties in the small hours of the night. It was small, light, and compact. There was no competition: the Roberton Manual was the book to have!

Nearly 20 years on, where has the 4th edition taken us? Bigger, certainly: a be-moth of a “small” manual with 550 pages. Not much taller or wider than its predecessors, but much thicker, the rather thin and closely typeset pages distinctly reminiscent of a Bible. Thirty four chapters and eight appendices. There’s an awful lot of information in here.

Road testing a book like this is quite a challenge. Clearly one should not ask it to perform in a manner for which it was not designed, and the authors helpfully explain in the preface that their aim “is to provide a guide for the management of the acute medical and surgical problems a resident is likely to encounter on a modern neonatal intensive care unit.” So I went for chapter 1, expecting it to plunge in where every resident will have been called away to the next delivery. It was small, light, and compact. Not much taller or wider than its predecessors, but recommended reading is provided at the end of each chapter.

The chapter entitled “Drugs and the neonate” is a novel concept and a valuable addition to our literature. The book brings together a clinical biochemist, a neonatologist, and a medical microbiologist as authors in a successful attempt to describe appropriate laboratory investigations and clinical management of the neonate. This paperback aims to provide junior doctors, laboratory scientists, and neonatal nurses with background information that will help solve common neonatal problems. The chapters deal systematically with common biochemical and infective problems that may befal neonates. There are also sections on breast feeding, parenteral nutrition, and therapeutics. Best of all it finishes with appendices including normal reference ranges and a useful glossary.

The expenditure of £30 rewards the reader with more than 300 pages which are clear and well arranged. Tables and flow diagrams are easy to dip into. More senior readers may be frustrated that the book is not referenced, but recommended reading is provided at the end of each chapter.

Three small criticisms and suggestions for the next edition:

- The chapter entitled “Drugs and the neonate” is too short. The figure referring to biochemical and haematological monitoring (fig 1) only lists 11 drugs, ignoring commonly used drugs such as vecuro-nium, insulin, surfactant, salbutamol, 5-flucytosine, and steroids. Even those lucky 11 have curious omissions—for example, the oliguria and fluid retention associated with indometacin.

- Secondly the book recurrently ignores the unusual demands of the extreme preterm infant—for example, dialtonal exchange for polycythaemia is said to be carried out in 10 ml aliquots, and does not recommend smaller volumes of 500 g whose total blood volume may be little more than 40 ml.

- Thirdly the section on viral disease and transmission should be more detailed. “Low risk” is not quantitated, and CMV is described variously as “largely inacti-vated by freezing” and (one page later) “does not survive freezing”—an inconsistency that leaves the reader feeling insecure about such an important safety issue.

Nevertheless this is a volume that is informative and attractive, from the cartoon of a neonate’s head (front cover) to the photograph of the three distinguished and pathologically cheerful authors at the end. For all professional staff there are 300 pages of clear descriptions containing information that will prove useful in organising investigations in the neonatal unit. There are also modern data which can be used to defend the embalmed SHO against the wrath of the consultant ward round. Every neonatal unit should purchase a copy. I predict that these valuable pages will be well thumbed within a month. I look forward to a further edition, and hope that it will extend its scope to include other laboratory disciplines such as genetics and electrophysiology. The three authors deserve success with this winner.

M P Ward Platt
Neonatal Service, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK; m.p.ward-platt@ncl.ac.uk

Neonatology & laboratory medicine

Neonatology & laboratory medicine is a novel concept and a valuable addition to our literature. The book brings together a clinical biochemist, a neonatologist, and a medical microbiologist as authors in a successful attempt to describe appropriate laboratory investigation and clinical management of the neonate. This paperback aims to provide junior doctors, laboratory scientists, and neonatal nurses with background information that will help solve common neonatal problems. The chapters deal systematically with common biochemical and infective problems that may befal neonates. There are also sections on breast feeding, parenteral nutrition, and therapeutics. Best of all it finishes with appendices including normal reference ranges and a useful glossary.

The expenditure of £30 rewards the reader with more than 300 pages which are clear and well arranged. Tables and flow diagrams are easy to dip into. More senior readers may be frustrated that the book is not referenced, but recommended reading is provided at the end of each chapter.

Three small criticisms and suggestions for the next edition:

- The chapter entitled “Drugs and the neonate” is too short. The figure referring to biochemical and haematological monitoring (fig 1) only lists 11 drugs, ignoring commonly used drugs such as vecuro-nium, insulin, surfactant, salbutamol, 5-flucytosine, and steroids. Even those lucky 11 have curious omissions—for example, the oliguria and fluid retention associated with indometacin.

- Secondly the book recurrently ignores the unusual demands of the extreme preterm infant—for example, dialtonal exchange for polycythaemia is said to be carried out in 10 ml aliquots, and does not recommend smaller volumes of 500 g whose total blood volume may be little more than 40 ml.

- Thirdly the section on viral disease and transmission should be more detailed. “Low risk” is not quantitated, and CMV is described variously as “largely inacti-vated by freezing” and (one page later) “does not survive freezing”—an inconsistency that leaves the reader feeling insecure about such an important safety issue.

Nevertheless this is a volume that is informative and attractive, from the cartoon of a neonate’s head (front cover) to the photograph of the three distinguished and pathologically cheerful authors at the end. For all professional staff there are 300 pages of clear descriptions containing information that will prove useful in organising investigations in the neonatal unit. There are also modern data which can be used to defend the embalmed SHO against the wrath of the consultant ward round. Every neonatal unit should purchase a copy. I predict that these valuable pages will be well thumbed within a month. I look forward to a further edition, and hope that it will extend its scope to include other laboratory disciplines such as genetics and electrophysiology. The three authors deserve success with this winner.

I A Laing
Simpson Centre for Reproductive Health, 51 Little France Crescent, Edinburgh EH16 4SU, Scotland, UK; ian.laing@luht.scot.nhs.uk

Fetal and neonatal brain injury: mechanisms, management and the risks of practice, 3rd edition
Edited by D K Stevenson, W E Benit, P Sunshine. Cambridge: Cambridge University Press; £140.00, pp 926. ISBN 0521806917

Brain injury remains a common theme in a large proportion of survivors of extreme prematurity and/or neonatal encephalopathy. The headline rates of significant disability have been largely unchanged despite the enor-mous advances in neonatal intensive care of the post-surfactant era, and more subtle educational difficulties are later declared in many others. It is essential that clinicians continue to strive for a deeper understand-ing of the mechanisms of brain injury to not only guide conventional management, but also look ahead to the future strategies in which neuroscience advances may translate into plausible clinical strategies—for example, promoting the regrowth of damaged cortical neurones across an area of periventricular leukomalacia.

The strength of a textbook such as this is to give an in depth overview of many aspects of brain injury. This is accomplished well by a distinguished list of mostly United States based contributors, who consider the many aspects of neonatal brain injury in terms of aetiology, epidemiology, diagnosis, management, and
long term outcome. A section on medico-legal issues makes interesting reading, although is not directly applicable to the British judicial system. Surprisingly little is anticipated not directly applicable to the
—
account of an area of vital importance to
Readers will be encouraged to catch up with the neuroprotective effect of brain cooling.

Thickening feeds with carob bean gum is of disproven value in GOR. We feel that in preterm infants, feeding thickening may not be free from serious adverse effects and should not become widely adopted without a formal randomised trial.

P Clarke, M J Robinson Neonatal Intensive Care Unit, Hope Hospital, Salford, UK, M6 BHD; paul.clarke@srh.nhs.uk doi: 10.1136/adc.2003.036392

References

LETTERS

Thickening milk feeds may cause necrotising enterocolitis

Extremely low birthweight infants have the highest risk of developing necrotising enterocolitis (NEC). We report on two infants who developed fatal NEC while established on enteral feeds. A common anecdotage was recent treatment with Carobel. An 820 g boy and a 752 g girl, both of 25 weeks gestation, were fully established on enteral feeds with expressed breast milk by day 12 and 18 respectively. Non-specific symptoms were attributed to gastro-oesophageal reflux (GOR), which was empirically managed by thickening milk feeds. Infant Carobel (Cow & Gate) was started on postnatal day 4 and 12. Onset of NEC was day 26 and 30, with death one day later. Carobel is not licensed in the United Kingdom. The manufacturer advises that two to three level spoons may be added per 60–90 ml, but mentions no precautions or contraindications for preterm infants. Its use in preterm infants may have crept in since the withdrawal of cisapride in July 2000. Although feed thickening may reduce the frequency and volume of regurgitation, acid reflux remains unaffected, and a paradoxical increase in the occurrence of GOR has been described. Moreover, milk thickened with carob bean gum is less nutritive because of the availability of essential elements.4 Two recent reviews found no evidence to support the practice of feed thickening in infants with GOR.5

We are concerned that carob thickened milk may have played a role in the demise of these infants. The exact pathophysiology could not be further investigated because neither infant underwent postmortem examination. Thickened feeds may have led to NEC as a result of bowel obstruction with subsequent bacterial overgrowth or following direct mucosal injury by thickened feeds. Bacterial overgrowth is plausible because feed thickeners have been shown to significantly increase microbial population and enzyme activities in the weaning rat cecum.3 Enterocolitis has previously been reported in an infant with formula thickened with pectin and cellulose,8 as has neonatal intestinal obstruction and gastric lactobezoar.

Thickening feeds with carob bean gum is of disproven value in GOR. We feel that in preterm infants, feeding thickening may not be free from serious adverse effects and should not become widely adopted without a formal randomised trial.

P Clarke, M J Robinson Neonatal Intensive Care Unit, Hope Hospital, Salford, UK, M6 BHD; paul.clarke@srh.nhs.uk doi: 10.1136/adc.2003.036392

References

Reference

Linear IGA bullous dermatosis in a neonate

We encountered a neonatal case of linear IGA bullous dermatosis. Only one other case of the disease diagnosed in the neonatal period has been reported, so we felt that it was important to describe this case.

Small vesicles first appeared on the face, hands, and legs of a Chinese full term baby boy on day 3 of life, which evolved into bullae on day 13. New bullae continued to erup until day 18. By day 25, all the skin lesions had crusted, and skin healing was complete without scar formation. Besides skin eruption, the most overwhelming feature of the course was mucosal involvement. The infant presented with stridor on day 10 and went into respiratory failure requiring intubation. On day 30, bronchoscopy revealed a swollen larynx and a vesicle on the left ari-epiglottic fold. He was extubated on day 38 in the middle of a three week course of prednisone. After extubation, stridor gradually subsided in a couple of weeks.

The diagnosis of linear IGA bullous dermatosis was made with skin biopsy on a bulla. Histological sections showed splitting of the skin at the dermo-epidermal junction with predominant polymorph infiltrate. Immuno-fluorescence showed a linear deposit of IGA at the dermo-epidermal junction. Staining for IGA and C3 was also positive.

Linear IGA bullous dermatosis commonly occurs in childhood with onset from 6 months to 10 years.1 It classically runs a relapsing course with complete remission attained after puberty. The overall incidence of involvement of mucous membranes of the oral cavity, eyes, and external genitalia is 57%, 40%, and 72% respectively.7 However, the mucosal involvement is not life threatening.

The other neonatal case of linear IGA bullous disease reported in the literature also showed serious mucosal involvement. It manifested as respiratory failure requiring treatment by extracorporeal membrane oxygenation, oesophageal dysmotility with choking during feeding, and blindness as a result of conjunctival scarring.5 In both these neonatal cases, complete remission was attained after the unsettled neonatal period. Hence, linear IGA bullous disease with onset in the neonatal period contrasts sharply with the classical presentation of the childhood disease in having serious mucosal involvement and a non-relapsing course.

We hope that our report serves as a reference for neonatologists and dermatologists who may encounter similar cases in the future.

S Y R Lee, C Y Leung, C W Leung, C B Chow, K M Leung, Q U Lee
Princess Margaret Hospital, Princess Margaret Hospital Road, Kwan Chan, Hong Kong; leesy@netvigator.com doi: 10.1136/adc.2003.037911

References

Vertical transmission of Citrobacter freundii

An infant developed early respiratory distress after delivery at 34 weeks gestation after prolonged rupture of membranes. Citrobacter freundii was cultured from a maternal mid-stream urine sample at delivery. C freundii, resistant to ampicillin but sensitive to gentamicin, cephalosporins, and ciprofloxacin, was isolated from neonatal blood cultures taken on admission. Gram negative rods were seen on microscopy of cerebrospinal fluid (CSF), with no white cells and 730 red cells per high power field. CSF protein was 1.26 g/l and glucose 3.0 mmol/l, with blood glucose of 4.9 mmol/l. No organisms grew on CSF culture. Ampicillin and gentamicin were discontinued, and ciprofloxacin and cefotaxime started for a three week course. Serial cranial ultrasound and computed tomography scans showed no evidence of intracranial abscess or ventriculitis. At 1 year of age the infant is neurodevelopmentally normal.

Neonatal infection with Citrobacter species is usually acquired in a nosocomial fashion, and causes septicemia, meningitis, and brain abscesses associated with a high morbidity and mortality. Eleven cases of vertically acquired Citrobacter koseri infection have been reported.6 However, the only previous report of vertical transmission of C freundii describes a 32 week infant in whom the organism was identified from maternal high vaginal swab and infant gastric aspirate, but not from blood cultures.2 Neonatal septicemia with meningitis, as in our patient, has not been previously described. C freundii differs from other organisms causing neonatal meningitis by being able to
Recruitment failure in early neonatal research

Rates of neurodevelopmental handicap are high among extremely low birthweight survivors, and the first 48 postnatal hours probably give the greatest opportunity for preventing damage. However, at this time, families are in turmoil and may have difficulty in coming to terms with a small baby in intensive care. We recently had to abandon an observational, non-invasive study because of practical difficulties arising from the new Research Governance Framework, and we would like to share this experience, and its implications, with the research community.

We needed parental consent for the study, which had local research ethics committee approval. Babies had to be <1500 g birth weight, >25 weeks gestation, <48 hours old, ventilated, with an arterial line, and no prior intervention for circulatory compromise. The last two requirements meant that, in reality, babies had to be recruited within the first 12 hours. A non-invasive measure of peripheral oxygen consumption appears to be confined to late onset disease, with possible explanations being the early use of antibiotics, and absence of a putative virulence factor.

The combination of cefotaxime and an aminoglycoside is recommended for neonatal Gram negative meningitis, but CSF concentrations of gentamicin may only be marginally above the minimum bactericidal concentration of Gram negative organisms. Ciprofloxacin has been shown to be effective in Gram negative meningitis, and should be considered in the treatment of this condition.

T J Molpas, J J Munoz
Department of Paediatrics, The General Hospital, Jersey JE1 3QS, Channel Islands, t.molpas@gov.je

I Muscat
Department of Pathology, The General Hospital, Jersey

doi: 10.1136/adc.2003.043398

References

Figure 1 Recruitment to research project on neonatal unit (NNU) over 12 month period.

With additional local research ethics committee permission, we tried to recruit women at high risk of delivering before term from 25 weeks gestation. The consent process was more complex in this group, as the explanation had to include information about standard neonatal care and procedures. Parents in this group were given 24 hours to come to a decision. Figure 1 shows that, of 28 eligible babies, only five were recruited. Eight out of nine mothers approached antenatally gave consent, but only two of their babies were studied, as three did not meet the entry criteria and the other three were born elsewhere.

What went wrong? Since the Griffiths report, the emphasis has been on obtaining fully informed parental consent, and the research team has to ensure that the parents thoroughly understand the research and its implications. Research where parents signed consent forms, but later claimed that they did not understand the research, was heavily criticised. Consequently researchers are reluctant to approach parents who are in any way distressed, because of the difficulty in ensuring valid consent. If it is important for early neonatal research to continue, we urgently need agreement on a sensitive, humane and realistic framework that is acceptable to both parents and clinical researchers alike.

S Nicklin, A Spencer
Neonatal Unit, University Hospital North Staffordshire (NHS) Trust, Newcastle Road, Stoke on Trent ST4 2GG, UK, andy.spencer@uhsns.nhs.uk
doi: 10.1136/adc.2003.043711

References

Gestational age in the literature

In neonatology, the correct gestational age (GA) is extremely important, as the viability and survival of the premature baby depend on it. A difference of a few hours or a day can have a substantial impact on the survival and long term morbidity of premature babies.

Doctors are trained to report the GA of a premature baby in exact days—for example, 26+4 (GA = 26 completed weeks and 4 days). Reporting the GA in this format helps in understanding and assessing the postnatal and maturational age of premature babies. One would therefore expect GA to be reported exactly in the literature, especially in articles, studies, and trials dealing with survival and morbidity in premature babies. In fact, descriptions of GA are extremely ambiguous in most articles. An example of this ambiguity is survival at 26 weeks GA is...
be wise and safe? These are the questions we should be struggling to answer.

I have reservations about the authors’ “standard work up protocol”. A cerebrospinal fluid analysis on asymptomatic, otherwise healthy neonates with fever is probably unwarranted. I think it is unwise to perform a spinal tap on a baby with suspicion of dehydration fever. In other words, if one suspects meningitis in a neonate, it is not fair to withhold antibiotics. About the treatment protocol, the authors treated 107 infants with antibiotics unnecessarily; only one had a positive culture. This approach of empiric antibiotic use needs critical appraisal in the protocol of the institution.

Fever without symptoms is not uncommon in healthy, full term babies in the postnatal ward. To carry out a prospective study on these babies would be feasible. There are two issues that need clarification, how to investigate and how to treat. I do not think that there is much controversy about investigating a febrile neonate. With the present knowledge, any febrile neonate with fever, irrespective of symptoms, should be investigated appropriately with full blood count and blood and urine cultures. It is the treatment that is the root of the controversy and needs further evaluation. However, in view of the present study, in spite of a promising conclusion, fever in healthy neonates should not be treated as something benign and dealt with casually.

Having said all this, I appreciate the methodology of the study and the authors’ endeavour to look further into the issue of fever in neonates. I hope my suggestion will generate intense discussion and not just be taken as a critical review of the paper. Lastly, in my view after reviewing the above paper in my view after reviewing the above paper, in view of the above paper, it is important to re-examine the role of simple measures like phototherapy programme in the United Kingdom. Having said all this, I appreciate the methodology of the study and the authors’ endeavour to look further into the issue of fever in neonates. I hope my suggestion will generate intense discussion and not just be taken as a critical review of the paper. Lastly, in my view after reviewing the above paper in view of the above paper, it is important to re-examine the role of simple measures like phototherapy programme in the United Kingdom.
Home phototherapy in the United Kingdom

M Walls, A Wright, P Fowlie, L Irvine and R Hume

Arch Dis Child Fetal Neonatal Ed 2004 89: F282
doi: 10.1136/adc.2003.034868

Updated information and services can be found at:
http://fn.bmj.com/content/89/3/F282.2

These include:

References
This article cites 3 articles, 0 of which you can access for free at:
http://fn.bmj.com/content/89/3/F282.2#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/