Late anaemia in Rh haemolytic disease

As it is clearly stated in the review by Gottstein and Cooke, we consider it unethical to withhold or delay high dose intravenous immunoglobulin (IVIG) treatment in infants with haemolytic disease of the newborn. Since the study we did in 1995, we have treated 129 patients with Coombs' positive haemolytic disease of the newborn, with the same method and had to resort to exchange transfusions only in three cases. On the other hand, late anaemia is a frequent problem in these cases, necessitating multiple blood transfusions, with well known complications.

The authors suggest that multiple doses of IVIG may reduce late anaemia. However, our observation in a limited number of cases is that, even multiple doses of IVIG are ineffective in preventing late anaemia. In an earlier unpublished study, we had shown that the erythropoietin levels were low in these infants. Therefore, we had conducted a double blind, randomised pilot study to investigate the effects of recombinant erythropoietin (rHEPO) in these patients. In this study, rHEPO was administered at a dose of 20 units/kg, subcutaneously, three times a week, starting at the 14th day of life and lasting for six weeks. This protocol reduced the number of erythrocyte transfusions significantly. With the impetus of this pilot study, we have used the same protocol for the subsequent 103 patients and the mean number of transfusions in this group was 1.5, with the majority of patients (55%) not needing any transfusions at all. There were no complications, including changes in neutrophil or platelet counts, and haemorrhagic or infectious complications. The administration of rHEPO to patients with haemolytic disease of the newborn, who had received IVIG early in life, not only decreases the infants' exposure to multiple blood donors, but also diminishes the need for hospitalisation and hence the cost that is involved. Therefore, rHEPO treatment is a suitable alternative to erythrocyte transfusions in these infants.

Systematic review of intravenous immunoglobulin in haemolytic disease of the newborn

We read with interest the recent review of Gottstein and Cooke. Their systematic review of trials reporting treatment of infants with proven Rh and/or ABO haemolytic disease of the newborn (HDN) treated with high dose intravenous immunoglobulin (HDIVIG) and phototherapy, with phototherapy alone demonstrated that significantly fewer infants required exchange transfusion in the HDIVIG group. The authors point out that anti-D is the commonest red cell antibody responsible for HDN. We have recently treated two children both of whom developed evidence of immune haemolysis due to anti-D antibodies acquired from IVIG.

The first patient, a 4 month old infant with Kawasaki's disease, was treated with intra-venous immunoglobulin (2g/kg) with immediate control of fever and irritability. Ten days later her disease became clinically active again and she was therefore given a second dose of IVIG (2g/kg from a different batch), which is a recognised therapeutic option. Her clinical condition again improved rapidly. A blood count two days after the second dose of IVIG showed that her haemoglobin had fallen suddenly by 2g/dl to 6.4g/dl, the blood film showed spherocytes and the direct antiglobulin test was positive, evidence of immune haemolysis. These red cell antibodies were collected prior to the second dose of IVIG confirmed her blood group to be AB Rh D positive with a negative direct antiglobulin test. Anti-D antibodies were now detected in the patient's serum; these were not present in her mother whose antibody screen was negative and whose blood group was A Rhessus D positive. The manufacture of the IVIG investigated the batches used and reported that the IVIG used for the second dose contained anti-D. The second patient, a 12 year old boy with systemic juvenile idiopathic arthritis received a fifth dose of IVIG from the same batch. He was screened for evidence of haemolysis and his antiglobulin test was positive 14 days after treatment. He remained asymptomatic with no fall in haemoglobin.

IVIG is an intravenous blood product not a drug; each batch is made from a pool of plasma collected from several thousand donors. Passive transfer of potentially significant red cell antibodies is a recognised hazard, reported in the company literature but only as a serological phenomenon, not as a clinical warning. The first case is a reminder that such complications may have serious clinical consequences. We would agree with the comment of Gottstein and Cooke that the use of IVIG is not without potential risks, including haemolysis. IVIG is not universally suitable for immune haemolysis in older children and adults where steroids are the first choice.

Indications for the use of IVIG must be clear and evidence based, and as with all pooled blood products, including albumin solutions, the individual batch numbers must be recorded in the case notes, so that adverse events can be appropriately and fully investigated.

High dose intravenous immunoglobulin in haemolytic disease of neonates

It was encouraging to read article of Gottstein et al, on the use of high dose intravenous immunoglobulin (HDIVIG) in cases of haemolytic disease of newborns (HDN) with their conclusion showing the effectiveness of HDIVIG. I have the following observations to make with respect to implications on practice and future research.

Firstly, all the references mentioned were between three and ten years old. These trials did not take into consideration the irradiation of the phototherapy used, although they did observe the number of exchange transfusions performed. Presently, a combination of blue and white fluorescent light double surface irradiance of the phototherapy unit and the patient, especially with an undersurface phototherapy unit, keeping thermal and nursing issues under consideration.

Secondly, the authors did not address enterohemorrhagic recirculation of bilirubin from the gut. Inexpensive measures can decrease the back entry of bilirubin from gut, like early enteral feeds, oral administration of agar agar, isbagol husk and so forth, and further reduce serum bilirubin levels. Further randomised controlled trials are required before administration of HDIVIG becomes routine in HDN. These trials should compare use of current effective phototherapy combinations with the
highest possible irradiance, agents that decrease enterohepatic recirculation of bilirubin with or without HVIDIG, and the need for exchange transfusion in HDN. They should also address cost effectiveness and safety, considering the cost of HVIDIG in the developing world.

G Gupta
Arméd Forces Medical College, Pune, India; gupitas-ip@gmail.com

References

Authors’ reply
We are grateful to our colleagues for their interest and responses to our paper.1 In response to Dr Oály's comments we agree that late anaemia can be a problem in babies who were given intravenous immunoglobulin (IVIG), as is also demonstrated in our systematic review. Even when infants have received exchange transfusions (XTs) top up red cell transfusions may be required. In a recent local audit of XTs, 35% of babies received top up red cell transfusions after one or more exchange transfusions. During a five year period from 1998-2002, 27 babies with Rhesus, Kell, or ABO incompatibility had 28 XTs. Gestation ranged from 28 to 40 completed weeks. Of 26 infants for whom follow up data was available, nine (35%) had received top up red cell transfusions.

We read with interest Dr Oály and colleagues paper describing a double blind randomised controlled trial of subcutaneous recombinant human erythropoietin (rEPO) and its use in this situation.2

We await with interest the outcome of a Cochrane meta-analysis of this therapy in newborn infants (currently at the protocol stage).

We reviewed our computer database for a three year period from December 1999 to December 2002 to postulate what impact IVIG might have on our population of babies with haemolytic disease of the newborn. Two hundred and five babies had a positive direct Coombs test (DCT) result. Of these infants, 12 received XTs. There is a degree of under ascertainment with this database as there were four additional babies who required an XT during this time period. However, we make the assumption that the proportions of those missing requiring XTs is similar to the proportions of DCT positive babies who were missed from the database. Eighty five babies had moderate or strongly positive DCT. Of these 11 received an XT, giving an XT rate in this group of 13%. After IVIG the relative risk of requiring an XT is 0.28,1 thus with IVIG the XT rate would be reduced to 3.6%, decreasing the number of XTs to three and therefore preventing eight. If IVIG were administered to all babies with moderate or strongly positive DCT, in our population the number needed to treat would be 10.6 to prevent one XT. The degree of positivity of the DCT is an objective validated assessment of the strength of antigen/antibody reaction, determined by the degree of agglutination in the laboratory.3 During the three year period of this database there was only one infant who had only a weakly positive DCT and required an XT. Next we were interested to read Dr Cleary and colleagues case reports. We recognise that IVIG is not specific for a particular type of haemolysis and that it is a pooled blood product. We therefore agree that all the usual procedures regarding documentation of batch number and so on are followed as for any other blood product. IVIG has been used previously in preterm and low birthweight infants4 and is currently being used in the INTS Trial.5 As with any drug or blood product we will need to remain vigilant for the occurrence of any adverse events.

R Gottstein, RWI Cooke
Neonatal Unit, Liverpool Women’s Hospital, Liverpool L8 7SS, UK; rgottstein@rwniworld.com

References

Discharging twins separately from neonatal units
We recently had a debate in our unit about whether or not it was better for a well twin to remain with its sibling in hospital until the latter was fit to be discharged. Our current practice is to keep the well twin in the special care baby unit until its twin is fit for discharge. The group who favoured separate discharge cited limited risk of nosocomial infection, decreased costs, cost availability, and the possibility of settling into a routine with one twin at home as supportive factors for their argument. Those against separate discharge cited impaired bonding, breast feeding difficulties, and transport issues as their reasons.

We took the discussion to the RCPCH and NICU-net email discussion groups and found no clear consensus. Our American colleagues routinely send multiples home separately and cite health insurance companies as a major factor in this decision. They find little problem with this arrangement as parental opinion was split between the two camps. British doctors seemed to be in favour of asking the parents’ opinion, so we identified 10 sets of twins from the last three years who could have been sent home separately. We then sent their parents a questionnaire exploring their opinions; five (50%) were returned.

Most parents agreed that their twins were ready for discharge at different times and said that they would have preferred separate discharge. However, they believed that they had been given this option and had not taken it. They realise that this would have caused problems with visiting, feeding, and bonding with the remaining twin even although they all had their own transport. They did not think that having one twin home first would have helped them to adjust and settle into a routine. Their preferred option would have been to have roomed in with the well twin while the other twin stayed on the special care baby unit.

Our current practice is that we have an informed discussion with the parents when this situation arises. As one email respondent (a doctor and mother of twins) wrote: “Having twins is full of decisions about when to pair them and when to split them up.”

J P Chapman, K Lange
James Paget Hospital, Lowestoft Road, Gorleston, Norfolk NR31 6UA, UK
Correspondence to: Dr Chapman; john.chapman@paget.nhs.uk

Role of serum peak levels of vancomycin in neonatal intensive care units
We would like to comment on the article by Tan et al.1 The purpose of measuring serum levels of a drug is either to monitor the toxicity of the drug or the therapeutic concentration for a particular condition. Emergence of infections with β-lactam-resistant Staphylococcus epidermidis, Staphylococcus aureus, and Enterococcus sp, has led to the frequent use of vancomycin in neonates. Vancomycin has historically had a reputation for toxicity. Many of its original adverse reactions, including ototoxicity and nephrotoxicity, were probably due impurities in the formulation.7 Now that a more purified form is available, these adverse reactions are uncommon. However, concomitant administration with aminoglycosides or other nephrotoxins may increase the risk of toxicity.8 Effective drug therapy is measured by response, not by achievement of a particular circulating drug concentration. Because the association between vancomycin peak concentrations and toxicity is poor, some have recommended measuring trough concentration only as this study is clearly documenting, but others have suggested not measuring any concentrations in the majority of children with normal renal function.9 However, in critically ill premature neonates with poor glomerular filtration rate, prematurity, and compromised cardiovascular function, it remains prudent to measure both peak and trough concentrations in those with poor- or changing renal function. Caution must be exercised when other nephrotoxic or ototoxic drugs such as aminoglycosides are administered concurrently.10 In this study, the authors did not mention the concomitant use of aminoglycoside.

S Jain
Southern Illinois University School of Medicine, Springfield Illinois, USA; jeinsuni@hotmail.com

References

www.archdischild.com
Methaemoglobinaemia with concurrent blood isolation of Saccharomyces and Candida

Saccharomyces boulardii is closely related to S. cerevisiae and is used as a biotherapeutic agent, although some reports suggest pathogenicity. We present a case of neonatal fungaemia with concurrent methaemoglobinaemia, occurring after a brief period of treatment with S. boulardii. A male infant was born at 30 weeks of gestation by caesarean section because of intrauterine growth restriction and maternal hypertension. The baby was well apart from persistent gastrointestinal symptoms that hampered feeding and forced parenteral support. During the third week of life, administration of S. boulardii (Codex DNB; half a capsule a day, equivalent to 2.5 × 10^9 organisms) was started in an attempt to prevent bacterial overgrowth. After four days of treatment, the baby developed symptoms suggesting sepsis and an unexplained methaemoglobinaemia (methaemoglobin concentration = 16%). Codex was stopped and empirical antibiotic coverage, including liposomal amphotericin B, was started. Blood cultures showed growth of Candida albicans, but the central venous catheter tip was negative. Methaemoglobin levels halved in two days (7%), but remained at 5% at 48 h. Liposomal amphotericin B treatment was prolonged for a further six days and then discontinued. At this time, methaemoglobin levels were near normal (3%), and blood cultures were negative. The gastrointestinal symptoms resolved with age and full gastrointestinal function was achieved.

Recovery of Saccharomyces two weeks after treatment had been stopped suggests persistence in the gut. It is tempting to think that the methaemoglobinaemia was caused by the continued presence of the yeasts, perhaps through excess host production of nitric oxide. Several studies have shown that nitric oxide plays a pivotal role in the interaction between yeasts and the phagocytic system, and it is well known that this radical readily oxidises haemoglobin. It is also reasonable to link late bloodstream invasion by Saccharomyces to previous enteric mucosal damage caused by a Candida infection, which was itself probably gut related. The recovery of S. cerevisiae in place of S. boulardii has been reported by others, and can be explained by the similarities between the two. It is ironic that the intervention used to prevent sepsis from enteric overgrowth not only did not succeed but was itself a cause of the problem that it was intended to prevent.

M S Lungarotti, D Mezzetti, M Radicioni
Paediatrician Monteluce, Via Bramonosi, Perugia, PG 06100, Italy; dm2@unipg.it

References

We wish to apologise for an error that occurred in a letter by Daniels et al (Arch Dis Child Fetal Neonatal Ed 2003; 88:F257). The first line of the third paragraph should have read: The salient results were that two thirds of granulomas resolved over a three week period without cauterisation.

P Davies
NETS, Sydney, Australia; daviespatrick@hotmail.com

D Cheng
Department of Oncology, Great Ormond Street Hospital, London, UK

A Fox
Department of Paediatric Allergy, St Mary’s Hospital, London, UK

L Lee
Neonatal Intensive Care Unit, Rosie Maternity Hospital, Cambridge, UK

References

We are grateful to all contributors who have provided feedback and suggestions for improving the usability and accuracy of this service.

The information on this website is not a substitute for professional medical advice, diagnosis or treatment. Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. If you think you may have a medical emergency, call emergency services immediately.

www.archdischild.com
Late anaemia in Rh haemolytic disease

F Ovalý

Arch Dis Child Fetal Neonatal Ed 2003 88: F444
doi: 10.1136/fn.88.5.F444

Updated information and services can be found at:
http://fn.bmj.com/content/88/5/F444.1

These include:

References
This article cites 3 articles, 1 of which you can access for free at:
http://fn.bmj.com/content/88/5/F444.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the
box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/