Multidrug resistant neonatal sepsis in Peshawar, Pakistan

S Rahman, A Hameed, M T Roghani, Z Ullah

ORIGINAL ARTICLE

Objective: To investigate the spectrum of organisms causing neonatal sepsis in Peshawar, Pakistan and to assess their sensitivity to various groups of drugs.

Methods: Blood taken from newborn babies admitted to the special care baby unit at the Khyber Teaching Hospital with a clinical diagnosis of neonatal sepsis was cultured. The data obtained from October 1997 to December 2000 were analysed and the results tabulated.

Results: A total of 1598 blood cultures were taken; 1003 were positive (positivity rate 62.8%). Escherichia coli was the most common organism found (36.6%), followed by Staphylococcus aureus (29.5%), Pseudomonas (22.4%), Klebsiella (7.6%), and Proteus (3.8%). No group B streptococcus was grown. Listeria monocytogenes was found in one cerebrospinal fluid culture. E coli and Pseudomonas showed a high degree of resistance to commonly used antibiotics (ampicillin, augmentin, and gentamicin), a moderate degree of resistance to cephalosporin (cefotaxime, cefotidine, and ceftriaxone), and low resistance to drugs not used for newborn babies (ofloxacin, ciprofloxacin, and enoxacib). S aureus showed a low resistance to all three groups of antibiotics.

Conclusion: Neonatal sepsis remains one of the leading causes of neonatal admission, morbidity, and mortality in developing countries. Gram negative organisms are the major cause of neonatal sepsis in Peshawar. Such organisms have developed multidrug resistance, and management of patients infected with them is becoming a problem in developing countries.

RESULTS

Blood culture results obtained from October 1997 to December 2000 were analysed. Of a total of 1598 blood cultures, 1003 were positive (positivity rate 62.8%): 367 (36.6%) were positive for Escherichia coli, 296 (29.5%) for Staphylococcus aureus, 225 (22.4%) for Pseudomonas, 77 (7.6%) for Klebsiella, and 38 (3.8%) for Proteus. No group B streptococcus was grown from any culture, and Listeria monocytogenes was grown from one cerebrospinal fluid culture.

The pattern of sensitivity of these organisms was analysed for three groups of antibiotics:

1. penicillins and aminoglycosides, which are used as first line antibiotics;
2. cephalosporins, which are used as a second line antibiotic;
3. quinolones, which are not recommended for use in children less than 4 years of age, but may be indicated if the child has blood culture positive severe sepsis and the organism is not sensitive to any other antibiotic.

Table 1 shows the pattern of sensitivity of E coli, S aureus, Pseudomonas, Klebsiella sp, and Proteus to various antibiotics. Considerable resistance to first line antibiotics, moderate resistance to cephalosporins, and low resistance to quinolones was observed.

DISCUSSION

About five million neonatal deaths occur world wide every year, 98% of which occur in developing countries, particularly Asia and Africa. Infections such as tetanus, pneumonia, septicaemia, meningitis, and diarrhoea account for 30–50% of neonatal deaths in developing countries. Neonatal sepsis is a life threatening emergency and any delay in treatment may result in death.

The spectrum of organisms causing neonatal sepsis in our study is similar to that reported for other neonatal units in developing countries, with Gram negative organisms being responsible for most cases, particularly early onset. Most
70% of episodes of neonatal sepsis in our unit are caused by Gram negative organisms, with E coli being the most common (36.6%) and Pseudomonas the second most common (22.4%). A similar pattern has been reported for the Children’s Hospital, Lahore. In that series, Gram negative organisms were responsible for almost 80% of episodes of neonatal sepsis, with E coli being the most common (45.8%) followed by Klebsiella (17.2%) and Pseudomonas (16.2%). Bhutta and Yusuf reported that Klebsiella was the most common cause of neonatal sepsis in Karachi, Pakistan. Joshi et al from India, reported Gram negative sepsis in 67.2% of their cases, with Pseudomonas aeruginosa being the most common organism (38.3%) followed by Klebsiella (30.4%) and E coli (15.6%). Similar patterns have been reported in Trinidad and Southern Israel. S aureus was the second most common organism in our study. Anwer et al found Gram positive organisms to be the main cause of neonatal sepsis in a teaching hospital in Karachi, Pakistan. Gram negative organisms were responsible for almost half of the episodes of early onset neonatal sepsis in their series. Similar results have been reported by Dawodu et al and Kilani and Basamad for Riyadh, Saudi Arabia.

Group B streptococcus was not isolated from any culture in our series. The same has been reported in most of the studies from Pakistan and other developing countries. Ghiorgis, in his study from Ethiopia, did not find any group B streptococcus. On the other hand, in the series reported by Robbierart et al from Guadeloupe, group B streptococcus was grown from 46% of positive blood cultures, and 52% of gastric aspirates were positive for group B streptococcus. In Al Wasl Hospital, Dubai, Koutouby and Habib Ullah found 106 culture positive cases of neonatal sepsis, with group B streptococcus being the most common organism (23%) particularly in early onset and very early onset neonatal sepsis. Ohlsson et al were the first to report the emergence of group B streptococcus in Saudi Arabia in the early 1980s.

Multidrug resistance of the causative organisms of sepsis is a rapidly emerging, potentially disastrous problem.

Table 1 Pattern of resistance to various antibiotics

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>E coli</th>
<th>S aureus</th>
<th>Pseudomonas sp</th>
<th>Klebsiella sp</th>
<th>Proteus sp</th>
</tr>
</thead>
<tbody>
<tr>
<td>First line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampicillin</td>
<td>S 11</td>
<td>60</td>
<td>13.57</td>
<td>34.66</td>
<td>47.5</td>
</tr>
<tr>
<td></td>
<td>R 89</td>
<td>40</td>
<td>86.43</td>
<td>65.34</td>
<td>52.5</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>S 21.3</td>
<td>30</td>
<td>21.4</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>R 78.7</td>
<td>70</td>
<td>78.6</td>
<td>84</td>
<td>82</td>
</tr>
<tr>
<td>Augmentin</td>
<td>S 6.5</td>
<td>27</td>
<td>4.48</td>
<td>18.75</td>
<td>39.6</td>
</tr>
<tr>
<td></td>
<td>R 93.5</td>
<td>73</td>
<td>95.52</td>
<td>81.25</td>
<td>60.4</td>
</tr>
<tr>
<td>Second line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>S 32.6</td>
<td>50</td>
<td>27</td>
<td>14</td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td>R 67.4</td>
<td>50</td>
<td>73</td>
<td>86</td>
<td>68.5</td>
</tr>
<tr>
<td>Ceftriaxime</td>
<td>S 32.5</td>
<td>36.76</td>
<td>43.49</td>
<td>33.76</td>
<td>28.9</td>
</tr>
<tr>
<td></td>
<td>R 67.5</td>
<td>63.24</td>
<td>56.51</td>
<td>66.24</td>
<td>71.1</td>
</tr>
<tr>
<td>Ceftriazone</td>
<td>S 28</td>
<td>41.23</td>
<td>33</td>
<td>18</td>
<td>34.28</td>
</tr>
<tr>
<td></td>
<td>R 72</td>
<td>58.77</td>
<td>67</td>
<td>82</td>
<td>65.72</td>
</tr>
<tr>
<td>Quinolones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>S 76.4</td>
<td>73.35</td>
<td>73</td>
<td>–</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>R 23.57</td>
<td>26.65</td>
<td>27</td>
<td>–</td>
<td>16</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>S 57.5</td>
<td>59</td>
<td>77</td>
<td>–</td>
<td>55.55</td>
</tr>
<tr>
<td></td>
<td>R 42.5</td>
<td>41</td>
<td>23</td>
<td>–</td>
<td>44.45</td>
</tr>
<tr>
<td>Enoxabid</td>
<td>S 60</td>
<td>44</td>
<td>49.6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>R 40</td>
<td>56</td>
<td>50.4</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Values are percentages. S, Sensitive; R, resistant.

Table 2 Pattern of resistance to various antibiotics in the Children’s Hospital, Lahore

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>E coli</th>
<th>Pseudomonas sp</th>
<th>Klebsiella sp</th>
<th>S aureus</th>
<th>S epidermidis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin</td>
<td>S 60</td>
<td>50</td>
<td>20</td>
<td>67</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>R 40</td>
<td>50</td>
<td>80</td>
<td>43</td>
<td>34</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>S 35</td>
<td>50</td>
<td>20</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>R 65</td>
<td>50</td>
<td>80</td>
<td>70</td>
<td>50</td>
</tr>
<tr>
<td>Ceftriaxime</td>
<td>S 35</td>
<td>65</td>
<td>20</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>R 65</td>
<td>35</td>
<td>80</td>
<td>70</td>
<td>40</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>S 85</td>
<td>87</td>
<td>65</td>
<td>28</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>R 15</td>
<td>13</td>
<td>35</td>
<td>72</td>
<td>61</td>
</tr>
</tbody>
</table>

Values are percentages. Source: Maryam et al. S, Sensitive; R, resistant.
antimicrobial emergency. In fact, the situation is worst in developing countries because of the lack of control of the use of antibiotics, the non-existence of legislation on antibiotic prescription, over the counter sale of antibiotics, poor sanitary conditions, lack of basic facilities and practices such as hand washing, lack of surveillance of the standards of maternity homes, and the practices of traditional birth attendants, who deliver almost 80% of all babies.21

Our study shows a very high degree of resistance of Gram negative organisms to first line antibiotics. About 40% of S. aureus were resistant to ampicillin. There is also high degree of resistance to cephalosporins by both Gram positive and Gram negative organisms. Only 43.5% of Pseudomonas were sensitive to ceftazidime. There is low degree of resistance to quinolones, particularly to ceftazidime. Similar results have been reported in other parts of Pakistan. The pattern of sensitivity reported by Maryam et al22 for the Children’s Hospital in Lahore (table 2) is similar to ours except that S. aureus and Staphylococcus epidermidis were found to be much more resistant to quinolones.

The data of Anwer et al23 from Karachi show 80% resistance to ampicillin but only 11–13% resistance to cefoxime and 0–10% resistance to amikacin. Bhutta et al24 from Karachi also reported a high degree of resistance to ampicillin and gentamicin among Gram negative organisms.

Emerging multiple drug resistance has also been reported in other parts of the world. The data of Orrett and Shurland25 from Trinidad show 85% of S. aureus are resistant to ampicillin, and Pseudomonas had 76.6% resistance to ceftazidime and 72.1% resistance to gentamicin. The study of Joshi et al26 from India shows a predominance of Gram negative bacteraemia (67.2%) in their series, which had 25–75% resistance to cefoxime, 68–78% resistance to piperacillin, and 23–69% resistance to gentamicin.

Friedman et al27 from Toronto isolated ampicillin resistant E. coli from 75% of infants with early onset neonatal sepsis and 53% from a group with late onset neonatal sepsis. Gentamicin resistance was found in 50% of the early onset group and 16% of the late onset group. Kaushik et al28 reported their bacterial isolates to be resistant to penicillin, ampicillin, and gentamicin, but with good sensitivity to third generation cephalosporins and netilmicin. Leibovitz et al29 reported the appearance of extremely virulent, multiresistant Klebsiella in their neonatal intensive care unit in Kaplan Hospital, Israel. Koksal et al,30 from India, reported a series of 35 cases of severe Gram negative neonatal sepsis, with all the organisms being resistant to ampicillin, amoxicillin, ticarcillin, cefazolin, cefotaxime, cefazidime, cefotaxime, and aminoglycoside. They treated these babies with meropenem and achieved 94.3% satisfactory clinical and bacterial response. The routine use of intrapartum antibiotic prophylaxis for the prevention of group B streptococcus septicemia in newborn babies has resulted in the appearance of ampicillin resistant Gram negative neonatal sepsis in a large number of developed countries.31–33

Antibiotic resistance is increasing world wide and has become a serious health problem in hospitals and the community. Infection with resistant organisms has been associated with treatment failure, higher morbidity and mortality, and increased costs. This has necessitated the development, implementation, and evaluation of policies on the use of antibiotics.33–36 Prudent use of antibiotics and antibacterials must be promoted to maintain the balanced microbial environment in which we live.36 Routine bacterial surveillance and study of their resistance patterns must be an essential component of neonatal care. A knowledge of these patterns is essential when local policies on the use of antibiotics are being devised.

REFERENCES

Multidrug resistant neonatal sepsis in Peshawar, Pakistan

S Rahman, A Hameed, M T Roghani and Z Ullah

Arch Dis Child Fetal Neonatal Ed 2002 87: F52-F54
doi: 10.1136/fn.87.1.F52

Updated information and services can be found at:
http://fn.bmj.com/content/87/1/F52

These include:

References
This article cites 26 articles, 4 of which you can access for free at:
http://fn.bmj.com/content/87/1/F52#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Drugs: infectious diseases (220)
- Epidemiologic studies (929)
- Clinical diagnostic tests (720)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/