RAPID RESPONSES

Rapid responses

If you have a burning desire to respond to a paper published in AHC or FEN, why not make use of our “rapid response” option?

Log on to our website (www.archdischild.com), find the paper that interests you, click on “Full text” and send your response by email by clicking on “Submit a response”.

Providing it isn’t libellous or obscene, it will be posted within seven days. You can retrieve it by clicking on “read eLetters” on our homepage.

The editors will decide, as before, whether to also publish it in a future paper issue.

A national review of neonatal resuscitation programmes for midwives

Editor—A considerable number of babies with no obstetric or neonatal at risk factors require help in establishing respiration at birth. There is a national lack of neonatal resuscitation programmes in delivery units and at home. Midwives in the United Kingdom are primarily involved in the initial resuscitation of newborn babies in delivery units and at home.

1. A national review of neonatal resuscitation programmes for midwives

Editor—A considerable number of babies with no obstetric or neonatal at risk factors require help in establishing respiration at birth. There is a national lack of neonatal resuscitation programmes in delivery units and at home. Midwives in the United Kingdom are primarily involved in the initial resuscitation of newborn babies in delivery units and at home. There is a national lack of neonatal resuscitation training in the United Kingdom, with inadequate provision of neonatal life support skills remaining an acknowledged contributor to perinatal death.1 There are no directives from governing bodies for midwives to attend mandatory neonatal life support updates. The lack of standardisation of the availability of specific neonatal resuscitation programmes for midwives is not known.

A standardised written and telephone questionnaire survey of all national maternity units (n = 245) was undertaken. The questionnaire primarily examined duration, structure, and assessment strategies of the resuscitation programmes for midwives.

1. 245 maternity units were surveyed by written and telephone questionnaires; 196 responded (80%). Of these, 172 (88%) have some form of resuscitation programme available for midwives. The resuscitation programmes have been in existence for a mean (SD) of 3.7 (2.6) years (range 0.5–20). The programmes involve on average 1.9 main trainers (range 1–5), including senior midwives, paediatricians, and resuscitation training officers. There are pronounced structural differences between the available resuscitation programmes. Those in 100 (58%) units closely follow the Neonatal Life Support course guidelines (UK Resuscitation Council). The programmes in the remaining 72 (42%) of units are variably incomplete in their evaluation of neonatal basic life support. Of the units currently not following standard guidelines, 61 (84%) expressed a desire to change. Of the units with resuscitation programmes, 116

(67%) have no standards of achievement set for resuscitation training. Standards were characterised by competence in basic life support, clinical scenarios, and theoretical knowledge of neonatal resuscitation. Resuscitation training was compulsory for midwives in 132 (72%) units. Midwives were assessed on average every 9.2 (5.8) months (range 6–24), with 148 (86%) units holding a logbook of attendance. There are regional differences in the availability of resuscitation sessions (range 77–100%), existence of standards of achievement (range 1–50%), and existence of compulsory resuscitation programmes (range 50–92%). Overall, North West hospitals have high scores in the above three categories stated. Currently, no individual region has the highest scores for all the categories stated.

This is the first national survey examining neonatal resuscitation programmes for midwives. Most (88%) of the 196 midwifery units that responded have some form of resuscitation programme available for midwives. However, the programme in 42% of these units does not directly follow the Neonatal Life Support Course guidelines recommended by the UK Resuscitation Council. Moreover, 67% of programmes have no established standards. The average period of reassessment in these units is nine months. This interval may be too long because skill retention has been shown to be lost within six months of a neonatal resuscitation programme.2

The specific needs of UK midwives to provide basic neonatal life support have not been objectively evaluated, in contrast with the United States and Canada.1 In addition, there is a collective call for consistent skills attainment, nationally and internationally.3 The availability of resources and personnel may contribute to regional differences in resuscitation programmes. Continued structural differences in neonatal resuscitation programmes will further exaggerate differences in local and national practices. Midwives need to establish uniform standards in neonatal resuscitation and for mandatory hospital trust support not only in organising suitable resuscitation programmes, but also in ensuring compulsory attendance by midwives at these essential training sessions. Encouragingly, 84% of units currently not following the UK Resuscitation Council guidelines expressed a desire to change accordingly.

M G GNANALINGHAM C ROBINSON N A MIR

Neonatal Department, Warrington General Hospital, Lovely Lane, Warrington WA2 1QG, UK mingingham@hotmail.com


Table 1. Clinical details of five neonates presenting with hypernatraemic dehydration

<table>
<thead>
<tr>
<th>Infant</th>
<th>Maternal parity</th>
<th>Birth weight (kg)</th>
<th>Day next weighed</th>
<th>Weight loss (%)</th>
<th>Plasma sodium</th>
<th>Plasma area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3.430</td>
<td>8</td>
<td>25</td>
<td>168</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2.120</td>
<td>7</td>
<td>24</td>
<td>172</td>
<td>34.8</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3.576</td>
<td>118 (4%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3.630</td>
<td>6</td>
<td>20</td>
<td>150</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2.420</td>
<td>4</td>
<td>13</td>
<td>157</td>
<td>6.1</td>
</tr>
</tbody>
</table>

Placement of neonatal central venous catheter tips in the right atrium: a practice to be avoided?

EDITOR,—Following the recent media interest in pericardial tamponade complicating the use of percutaneous central venous catheters in neonatal patients, we wish to alert readers to our experience. Our previous policy was to accept right atrial placement of percutaneous central venous catheter tips. This was in line with published recommendations and is still considered acceptable practice in some units in the United Kingdom, in contrast with practice in the United States. Between 1995 and 1997, we had five cases of neonatal pericardial tamponade, three of which resulted in death. All were associated with right atrial tip positioning, induced by angulation, curvature, or looping of the line. We have now changed our unit policy to avoid placement of catheter tips in the right atrium, and instead place them in the superior or inferior vena cava. In addition, to allow for the possibility of catheter migration, we recommend that catheter tips should lie at least 0.5 cm outside the cardiac outline on chest radiograph in small infants, or 1 cm outside in larger infants. Although the caval position carries a small risk of thrombosis or hydrothorax, these complications are more benign than pericardial tamponade, which has a mortality of 65%. We recommend that placement of a percutaneous central venous catheter tip in the right atrium should no longer be accepted. In addition, we suggest that catheters that display angulation, curvature, or looping within the right atrium carry a particularly high risk of pericardial tamponade and demand urgent action. Although this issue has been the subject of correspondence in the RCPCH email discussion list, where the consensus was to avoid right atrial tip position, we believe there is a pressing need for a wider debate about current practice in the United Kingdom.

JONATHAN C DARLING SIMON J NEWELL PETER R F DEAR Department of Paediatrics and Child Health Clinical Sciences Building St James’s University Hospital Leeds LS9 7UK

Newborns have unique confounding factors regarding the TFR-F ratio

EDITOR,—Sweet et al investigated the serum transferrin receptor (STIR) and, for the first time in neonates, transferrin receptor-log ferritin (TFR-F) ratio in a prospective series of cord blood taken from term infants and their mothers. They are to be congratulated on completing another piece of the complex jigsaw that is fetal and neonatal iron metabolism.

STIR and TFR were increased in iron deficient mothers, but not in their infants. The authors discuss at some length the translational (not transcriptional as stated in the discussion) control of intracellular ferritin synthesis. They measured serum ferritin, which is a glycosylated form of L-ferritin, and has been shown to correlate with intracellular iron in the absence of confounding factors. However, serum ferritin is secreted in response to a wide variety of stimuli, including, for example, inflammation and shows gender differences in newborns. Concerns of this nature, serum ferritin may not accurately represent tissue iron stores.

It has already been reported that STIR does not correlate with other measures of iron metabolism in the newborn. In addition, although we agree with the author’s assertion that the TFR-F index is a measure of iron requirements in relation to iron availability in this unique population.

P REYNOLDS Immunology, Imperial College, Hammershine Hospital, London, UK p.reynolds@ic.ac.uk


Changes in plasma creatinine in first 72 hours of life

EDITOR,—Recently, Miall et al have reported a rapid rise in serum creatinine in the first 48 hours of life in neonates. But we have noticed in our clinical day to day practice that this rise is transient and may not be clinically significant. To confirm this, we looked at the initial serum creatinine levels on a group of term neonates admitted to the neonatal intensive care unit of King Fahd Hospital of the University, Al-Khobar, Saudi Arabia.

Neonates with congenital anomalies, perinatal asphyxia, and those requiring ventilatory support were excluded. The serum creatinine levels were measured together with electrolytes by using an automatic analyser (Dimension, Delaware, USA), which were relayed by the reporting computer system (Ulti-view, Los Angeles, USA). Serum creatinine was available for the first 72 hours on a limited number of neonates as most of the selected babies were stable within the first 48 hours of life and there was no need for extra serum electrolyte and creatinine measurements. Out of all the newborns admitted during the three month study period who fulfilled the inclusion criteria, 13 neonates had serum creatinine measurements available for the first 72 hours. These readings were noted down and were analysed using the SPSS statistical package. The mean, standard deviation and statistical significance.

Out of thirteen neonates, seven (53.8%) had an increase in their plasma creatinine on the second day while four (30.7%) had a
Haemoglobinopathy as a cause of nucleated red cells in the fetus and neonate


days

Table 1 Differences in the mean creatinine in first 72 hours

<table>
<thead>
<tr>
<th>Number of samples</th>
<th>Serum creatinine (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
</tr>
<tr>
<td>13</td>
<td>Day 1</td>
</tr>
<tr>
<td>13</td>
<td>Day 2</td>
</tr>
<tr>
<td>13</td>
<td>Day 3</td>
</tr>
</tbody>
</table>

*The drop to 0.44, as compared with day 1 of 0.68, was statistically significant, p = 0.04.

reduction. The remaining two (15.3%) had no change in their creatinine. After 72 hours of life, 12 out of 13 (92%) of the cases had a reduction in the creatinine (fig. 1). By the third day, the mean serum creatinine of the cohort had dropped to a significant level, 0.64 mg/dl to 0.44 mg/dl, p = 0.04 (table 1).

The study demonstrated a trend of fall in serum creatinine level by 72 hours. This reflected the improvement in the renal function and GFR. The improvement in the GFR has shown to be a function of postconceptional age, reflected by lower creatinine levels in term and near term infants as compared with preterm infants.1

We noted that the rise in creatinine in first 48 hours was recorded and by the third day most of the creatinine levels (92%) had dropped down. One could argue about the sample size of our study. The sample size was restricted as no extra blood was extracted for the purpose of study. The results with 12 out of 13 cases (92%) suggest that there may not be wide variation in the results. However, a larger study will provide more reliability and validity to our preliminary results.

In conclusion, caution should be exercised in interpretation of serum creatinine levels in the first 72 hours of life. A raised serum creatinine level in early newborn period does not necessarily indicate renal failure or kidney disease.

SHABIB MANZAR
KHALID AL-UMBAR
BASSAM H AL-AWARY
ABDULLATIF AL-FARADY
Division of Neonatology, Department of Pediatrics, King Faisal University and King Faisal Hospital of the University, PO Box 40211, Al-Khobar 31592, Saudi Arabia
shabibmanz@hotmail.com


Neonatal paroxetine withdrawal syndrome or actually serotonin syndrome?

EDITOR,—We would like to comment on the article “Neonatal paroxetine withdrawal syndrome” in the March 2001 issue of the journal. The authors describe what they have called “neonatal paroxetine withdrawal syndrome”. However the syndrome reported in the 4 neonates appears to be more consistent with serotonin toxicity, rather than withdrawal of paroxetine.

The literature to date contains one large series,2 two similar case reports with fluoxetine3 and two case reports with paroxetine.4 In the fluoxetine cases the syndrome was not described as a withdrawal phenomenon. In the first, a neonate born to a mother on fluoxetine had jitteriness, irritability, tachypnoea, temperature instability, tremors, increased muscle tone, and a hyperactive Moro reflex.5 All except the last of these are clinical features seen in serotonin toxicity in adults using selective serotonin uptake inhibitors (SSRIs) therapeutically or in overdose.6 The neonate in this case had fluoxetine levels that were measurable initially and which fell as symptoms resolved.

In the two case reports with paroxetine, the syndrome is referred to as a withdrawal phenomenon. However the time course and symptoms were similarly typical of serotonin excess.

In the cases reported by Stiskal et al the neonates developed the features soon after birth and they resolved over a period of days. In case 2 an increased serum paroxetine level was reported in the infant. The level was too low to detect by day 15, supporting a toxicity syndrome, rather than a withdrawal phenomenon. Similarly, in case 4 there was a raised serum paroxetine level at the time of the adverse effects. Serum paroxetine levels have been positively related to serotonin toxicity in adults.7

The features of case 4 may also have been exacerbated by the use of opiates in the delivery room. Pethidine is a well recognised cause of serotonin toxicity in conjunction with a serotonergic agent.8 By March 2001, there were 13 reports to the Australian Drug Reaction Advisory Committee classified as “withdrawal syndrome

Letters
neonatal" in conjunction with maternal use of an SSRI. However, on perusal, many appear to describe serotonin toxicity. We have also been involved with the management of a neonate, born to a mother following a sertraline overdose, who exhibited features of serotonin toxicity. In this case there was a single maternal ingestion 1 hour before delivery and therefore no earlier foetal exposure to cause withdrawal. We are concerned about the increasing use of the term “neonatal withdrawal syndrome” in symptomatic neonates being born to mothers on SSRIs. This may prompt the use of the term “neonatal serotonin toxicity” or, less specifically, poor neonatal adaptation secondary to serotonergic agents.

Authors’ response

Editor,—Isbister and colleagues point out important issues in defining the syndrome we and others described.1 2 Their argument is that the described syndrome is due to a hyper serotonergic state, rather than a lack of serotonin effect, as the term “withdrawal” suggests. We agree that this issue must be clearly solved because of the significant implications in the clinical management of some of the patients, especially concerning the role of continued breast feeding. At the same time, we are unsure whether we have sufficient data to declare that this is a hyper serotonergic condition. When we started summarising our experience as a report, we debated what terminology should be used to describe our patients. The term “SSRI discontinuation syndrome” was considered as it simply describes the temporal relationship between the dose and the syndrome. However, we opted for “withdrawal” because of its common use in similar cases in the literature. For example, a report by Kent and Laidlaw describes a full term healthy boy born to a mother on sertraline who was breast fed for three weeks. A day after weaning he developed agitation, poor feeding, constant crying, insomnia, and an enhanced startle reaction. These effects intensified over 48 hours then subsided. The time course in this case strongly suggests a withdrawal reaction. Our 2 patients had therapeutic serum concentrations of the drug. However, we do not know the concentrations prior to the presentation, hence the interpretation of the data is not as simple as Isbister and the colleagues indicate.

We think that the conditions we described resulted from a hypo-serotonergic state due to withdrawal. However, the possibility of functional excess of serotonin cannot be ruled out from the clinical assessment alone as there is considerable overlap between the two entities. The cause of the discontinuation syndrome in adults also remains incompletely understood.3
