LETTERS TO THE EDITOR

Oxygen saturation and retinopathy of prematurity

EDITOR.—The observations of Tin et al have led them to suggest that babies may have better overall outcomes when unit policies aim at oxygen levels of 70–90%, much lower than current practice in most NICUs. While I would support their call for further well designed research into this question, I have major concerns that this concept of beneficial hypoxia might creep into clinical practice, and even be extended to the older survivors. These authors are clearly aware of the limitations of their study. There are obviously many possible alternative reasons for the differences in outcome between the nurseries; table 2 of the study suggests widely divergent policies on a number of issues apart from oximetry levels. There are no data supplied regarding the actual oximetry levels maintained in the nurseries, which makes conclusions about the safety of a saturation of 70% rather speculative.

My main concern is the potential risk to older babies with chronic lung disease who might once again be subjected to chronic hypoxia. Since the more widespread acceptance that babies with chronic lung disease require similar oxygen levels to their more fortunate brethren we have largely abolished the high first year mortality in these babies, and the serious complications which was previously seen. One observational study of differing oximetry levels within a single unit confirmed the high risk of even mild chronic hypoxia in this group of infants,1 showing a high incidence of apparently life threatening events in the hypoxic infants. While there is continued uncertainty about the optimum oximetry levels in the early life of a preterm baby, there is no justification for maintaining subnormal levels of oxygen in babies beyond 34–36 weeks of age with chronic lung disease, and I trust that this paper will not encourage such practice.

ROB PRIMHAK
Senior Lecturer in Respiratory Paediatrics, Sheffield Children’s Hospital, r.a.primhak@sheffield.ac.uk

1 Tin W, Mulligan DWA, Pennefather P, Hey E. Pulse oximetry, severe retinopathy and outcome at one year of babies of less than 28 weeks gestation, Arch Dis Child 2001;84:F106–10.

Two sacred cows of neonatal intensive care

EDITOR.—I read the descriptive study of Tin et al with considerable interest. In essence it challenges two sacred cows of neonatal intensive care, whether intra-arterial monitoring is necessary, and what is the appropriate PaO2 at which to nurse critically ill babies.

ARTERIAL MONITORING

They do not give us accurate details of arterial catheter use. There is a hint that they are used for better flow monitoring and more resorting to SpO2 and capillary measurements. Nor do they tell us what analgesia is used for multiple capillary samples.

A fundamental principle of neonatal intensive care is minimal handling and indwelling arterial catheters allow all samples to be taken with no or minimal disturbance, and if the catheters are umbilical, they can also be used safely for virtually all infusions including TPN. Furthermore, in terms of oscillometric techniques, they allow accurate blood pressure recordings.

Surprisingly, the literature, and my own clinical experiences, show that serious complications of UAC are much more common in term infants, and within 48–72 hours of discharge after discharge from hospital. Arch Dis Child 1996;74:304–8.

Oxygen saturation and retinopathy of prematurity—Authors’ response

EDITOR.—We are happy to make it clear that we have never suggested that hypoxia is “beneficial” to babies with chronic lung disease. Indeed in describing our own practice we said, quite specifically, that “babies who were at least 8 weeks old (and it should be remembered that all our babies were born more than 12 weeks early), and whose retinal vasculature was mature, received liberal oxygen supplementation.” We would, however, remind Dr Primhak that those babies in the recent STOP-ROP trial who were given enough supplemental oxygen to maintain a saturation of 90–94% (to see if this reduced the severity of the retinopathy they had already developed) developed significantly more pulmonary problems than those only given enough oxygen to maintain a saturation of 80–94%.

The idea that oxygen is always a “good thing” dies hard. Iles and Edmunds2 showed that babies with a saturation below 90% in air at discharge were more likely to have a frightening colour change, apnoeic episode and/or sudden change in muscle tone during the subsequent three month study period, but they did not show that this risk was reduced by supplemental oxygen. There is equally little objective evidence that offering sustained supplemental oxygen actually does reduce the incidence of troublesome pulmonary hypertension.

WIN TIN
Department of Paediatrics, South Cleveland Hospital, Middlesbrough TS4 3BW, UK
tinwin@freenet.co.uk

DAVID MILLIGAN
PHILIPPA PENNEFATHER
Royal Victoria Infirmary, Newcastle upon Tyne NE4 4LP, UK

Two sacred cows of neonatal intensive care—Authors' response

EDITOR,—I am glad to have a chance to respond to Dr Robertson's assertion that the care of the babies nursed using oximeter settings of 70–90% was “negligent”, since I was responsible for the care of these children, but time and space does not allow a full response. Neither does space allow me to respond to the criticism implicit in your own introductory statement that such care “breaches BAPM guidelines”.

Dr Robertson says the cerebral palsy rate is “irrelevant”, but parents might not agree. Parents might also be glad that, while 4 children monitored using an oximeter alarm set at 80–90% went blind, no child in the other group went blind. They might also be glad that half were off the ventilator in 7 rather than 22 days, and out of oxygen in 4 rather than 10 weeks. The NHS might be equally grateful for the reduction in cost such an approach delivers. Post delivery growth in the conservatively managed group was only retarded half as much as in the comparator group, even though only a quarter ever received any parenteral nutrition. I am happy to leave parents to be the judge of whether this was “negligent” care.

Babies were not “kept at 3.3–6.0 kPa for days and days”: target saturation delivered an arterial partial pressure of 5–11 kPa, but alarm settings were more generous than this to discourage staff from adjusting the ventilator every time saturation transiently fell below 80%. Nor was blood pressure monitored by oscillometry (a technique that is known to be unreliable), as a proper reading of the paper would reveal. Dr Robertson mistakenly calls our survival rate our mortality rate, compares survival for mostly black American with that of our white English children, compares survival to discharge with survival to one year, and says nothing about the reliability with which gestation was documented. The same issue of your journal contains a better review of survival. We have every intention of following these children, but felt it would be wrong to wait ten years before reporting the above findings.

Dr Robertson mentions the outcome of a study of 38 children offered corrective surgery for transposition 6 months to 5 years after birth. Those operated on early had a better outcome, but Dr Robertson does not mention the fact that these children had a mean saturation of 68% before operation, and that 8 had a history of acquired central nervous system damage. However, the main thrust of Dr Robertson's letter is that there is no relevant airway subject described these babies to unnecessary pain. This overlooks the fact that morphine was given during early care, while early extubation greatly reduced the total number of blood samples eventually taken (as the differing transfusion needs confirm). Samples were not taken every 2–3 hours initially, but every 6 hours. In fact, Dr Robertson and I are at one in agreeing that minimising pain in a very valid reason for inserting an umbilical artery line in babies as immature as this; the limited use of lines was only mentioned because these had been considered unnecessary in the past to minimise the risk of severe retinopathy—a belief for which there is absolutely no controlled trial evidence.

Finally, Dr Robertson asks if this approach ever had ethics committee approval. It did not, because it was merely a continuation of the non-invasive approach initiated by my predecessor Dr Neligan in the mid 1970s, aided by the arrival of transcutaneous gas monitoring. Neither was the introduction of pancuronium in Dr Robertson's own unit placed before an ethics committee.

I can only conclude that someone ought to cull the two sacred cows Dr Robertson has been worshipping (along with all the other animals recently culled in the UK). In the absence of any other evidence based information, we need a proper controlled trial to address these issues.

EDMUND HEY
Retired Consultant Paediatrician,
Newcastle, UK
shey@easynet.co.uk

Using a modified nasopharyngeal airway in Pierre Robin syndrome

EDITOR,—Masters et al describe how a modified endotracheal tube can be used as a nasopharyngeal airway in infants with Pierre Robin syndrome.' We describe further modifications made to overcome some problems which we encountered in using the technique in one of our patients.

In the original description the protruding part of the airway is cut into four strands and the upper one cut off. We found the remaining strands rather thick, so cut them to half the width. We found that neucon tape was the only tape that held the strands with no additional benefit resulting from the use of Tinc Benz. The strands rubbed badly where they curved over the edge of the nostril. To overcome this a piece of suction catheter (9F) of just sufficient length to extend over the lateral and medial walls of the nostril is tied transversely across the tube with a 3/0 silk tie (fig 1). This lifts the three strands off the edge of the nostril and prevents any rubbing.

In our patient blockage of the airway occurred after formula but not breast milk feeds. It is therefore advisable to suction the airway after each feed. We used a suction catheter with graduation marks enabling insertion no further than the tip of the airway. If inserted further the pharyngeal stimulation usually caused vomiting.

If a nasogastric tube is also required this can be taped to one of the strands rather than the face. The airway was changed every four to six days, immediately before a feed and alternating between nostrils. Using 1% lignocaine drops and smearing the tube with lignocaine jelly reduced crying time after insertion.

Compared to the use of an unmodified tube with a large connector attached to the end, we feel that the technique described by Masters et al is far superior as it enables the child to lie prone and is less liable to get knocked or blocked through kinking. We suggest that the modifications we have described will further improve the acceptability of the technique.

MARIA GALO AVROU
KEITH FOOTE
Department of Paediatrics,
Royal Hampshire County Hospital,
Winchester, Hampshire SO22 5DG, UK
mariaalexia@btinternet.com

Editor,—It is now widely accepted that even the most preterm babies experience pain. This is difficult to measure and a number of clinical scales have been developed to make this assessment as objective as possible. We have used the visual analogue scale to assess the perception of pain can become very subjective. We have measured staff perceptions of pain experienced by babies in different clinical situations in a neonatal intensive care unit (NICU). These scenarios were presented to nursing and medical staff of the Exeter Neonatal Unit, and they were asked to score on a visual analogue scale the severity of pain they felt a baby experienced in these situations. The scale ranged from no pain to extreme pain on a 10 cm line and staff were asked to mark a point on the line that represented their assessment of the likely level of pain, and they were also asked whether they thought analgesia was necessary for the baby. There were six clinical scenarios:

- a Guthrie test on an awake term baby using a spring loaded Autolet device;
- a ventilated baby of 28 weeks gestation in no obvious distress with normal blood gases;
- a 35 week gestation baby of a diabetic mother who had four attempts at intravenous cannula insertion;
- a term baby with respiratory distress syndrome who developed a pneumothorax needing chest drain insertion;
- a 37 week gestation baby who had grazing of the scalp, although in both scenarios the baby was intubated for signs of respiratory distress; and
- a 27 week gestation baby who needed a lumbar puncture as part of a septic screen.

The questionnaire was anonymous. Sixty six questionnaires were distributed to 21 doctors and 45 nurses. Fifty six (85%) responded, of whom 18 were doctors (eight men, 10 women) and 38 were nurses (three men, 35 women). The doctors comprised senior house officers, specialist registrars, staff grade, consultants, and nursing staff of staffs, senior nurses, staff, and nursery nurses. The overall scenario score (calculated by allocating the score for each scenario) was significantly higher for nurses (mean (SD) = 28.5 (6.8)) than for doctors (mean (SD) = 35.8 (6.8); p < 0.001). The score scenario was significantly higher (p < 0.01) for nurses in four of the six clinical scenarios. The two scenarios in which the difference was not significant were the 28 week gestation ventilated baby and the baby with a grazed scalp, although in both situations the mean score was higher for nurses than doctors. In all scenarios, more nurses than doctors thought that analgesia was necessary but this was only statistically significant for the baby needing lumbar puncture (97% vs 77%; p = 0.03).

We feel this questionnaire study of our unit highlights important differences in perception of pain between doctors and nurses. Does it reflect a sex difference in the composition of the two groups? Are doctors distance themselves from the pain that often they inflict when performing practical procedures or are they more aware of potential side effects of the analgesics used? It would be interesting to explore the reasons for these differences.

M W QUINN
Consultant Paediatrician
Senior Lecturer in Child Health

Use of the black area on the tube tip for rapid estimation of insertional depth of endotracheal tubes in neonates: a potential hazard

Editor,—I would like to report a premature neonate who was intubated unilaterally as a result of improper use of the black area at the endotracheal tube tip. At 29 weeks gestational age, a 1024 g boy was born by emergency caesarean section to a mother who presented with preeclampsia. He was intubated immediately for signs of severe respiratory distress with a 3.0 mm ID tube via the nasotracheal route by the resident on call. The black area of the tube was inserted full length through the vocal cords with the upper rim positioned at the level of the vocal cords. Breath sounds were equally distributed at auscultation. The tube was fixated with adhesive tape at the 10 cm mark at the nose. A thoracic x-ray revealed that the tube tip was located in the entrance of the right main stem bronchus. The tube was withdrawn to a length of 5.5 cm and fixated at 8.5 cm at the nose, after which exogenous surfactant was instilled for treatment of grade 3 idiopathic respiratory distress syndrome. The ensuing clinical course was uneventful and the infant was discharged with a mild bronchopulmonary dysplasia several weeks later.

During the evaluation of this incident it was found that the resident who intubated had been taught by a particular technique that the position of the upper rim of the black area at the level of the vocal cords would ensure a proper insertional depth. However, the tubes at this other institution were produced by a different manufacturer. This prompted us to measure the actual length of the black area on the neonatal size endotracheal tubes of four major manufacturers. As shown in table 1, the length of the black area varies among the tubes from different manufacturers. One manufacturer has adjusted the length of the black area to the size of the patients for which a particular tube size is indicated. The others added a black area of fixed length merely to allow for rapid visualisation of the tube in the oropharyngeal space during the intubation procedure. Indeed, the black area of the tubes that are in use at our institution have a fixed length of 30 mm, regardless of tube size and, thus, patient size. The distance from the vocal cords to the carina of a neonate of 1000 g is approximately 30 mm.1 This explains the endobronchial position. The full length insertion of the black area of the endotracheal tube through the vocal cords in our patient. The equal distribution of breath sounds that was used in this case to determine the correct tube position has been shown to be an unreliable parameter for this purpose in neonates.2

In conclusion, this report illustrates that caution is required in the use of the black area at the tracheal tube tip for rapid estimation of insertional depth of endotracheal tubes in neonates.

H MOLENDIJK
Neonatologist,
Department of Pediatrics,
Division of Neonatology,
University Hospital Groningen,
PO Box 30001, 9700 RB Groningen,
Netherlands
h.molenrijk@bkg.agz.nl

Respiratory distress syndrome and antenatal corticosteroid treatment in premature twins

Editor,—Randomised, placebo controlled trials of antenatal corticosteroid administration have not shown a significant reduction in the incidence of respiratory distress syndrome (RDS) in premature infants.1 Subsequent retrospective studies examining the effect of steroids on twin pregnancies have shown conflicting results.2,3

Further to our recent article,4 we have investigated the relationship between respiratory distress and antenatal corticosteroid treatment in premature twins from the same historical cohort selected from the Australia and New Zealand Neonatal Network (ANZNN) 1995 database. To reflect best possible clinical practice, the analysis was restricted to the effects of an optimal steroid course (two doses of corticosteroids given, the first dose of which was received more than 24 hours and less than eight days before the infant’s birth) compared with no steroid treatment.

As shown in table 1, treatment with antenatal steroids resulted in a significantly lower incidence of RDS and surfactant use. The reduction from 18% to 11% in the risk of mortality was not significant (p = 0.08). Recent advances in obstetrics and neonatology could explain the absence of an antenatal steroid associated reduction in mortality.5 There was no statistically significant association between optimal steroid use and the outcome measures of days of intermittent positive pressure ventilation, days of oxygen, oxygen at 36 weeks corrected gestational age, severe intraventricular haemorrhage, or the number of proven infection episodes. Gestation, sex, and birth order did not modify the association between antenatal steroid treatment and RDS incidence.

The sample examined in this study is over twice the size of the most recent retrospective analysis, which reported no antenatal steroid associated reduction of RDS in twins.6 However, the reduction in RDS incidence observed in our study is less than that seen in singleton infants (odds ratio 0.35, 95% confidence interval 0.26 to 0.46).7 Optimal steroid treatment may be less effective in multiple gestation pregnancies because the increased volume of distribution in these mothers may reduce the plasma level of steroids to which the fetuses are exposed.

Table 1 Length of black area at the tube tip of endotracheal tubes for neonatal use as produced by four major manufacturers

<table>
<thead>
<tr>
<th>Tube (ID)</th>
<th>2.5 3.0 3.5 4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rusch</td>
<td>20 20 20 30</td>
</tr>
<tr>
<td>Portex</td>
<td>20 24 30 35</td>
</tr>
<tr>
<td>Vygon</td>
<td>17 19 — —</td>
</tr>
<tr>
<td>Vygon</td>
<td>25 25 25 25</td>
</tr>
<tr>
<td>Mallinckrodt</td>
<td>30 30 30 30</td>
</tr>
</tbody>
</table>

Tube ID and length of black area expressed in mm, st, surfactant tube.
Results are number of twin infants affected over number of infants at risk, also expressed as a percentage. Odds ratio and p values were produced by logistic regression with standard errors adjusted for within pair correlation.

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Optimal antenatal steroids</th>
<th>No antenatal steroids</th>
<th>Odds ratio (95% CI)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDS</td>
<td>184/310 59%</td>
<td>79/106 75%</td>
<td>0.49 (0.27 to 0.91)</td>
<td>0.02</td>
</tr>
<tr>
<td>Surfactant use</td>
<td>162/333 49%</td>
<td>87/108 62%</td>
<td>0.58 (0.34 to 0.99)</td>
<td>0.05</td>
</tr>
<tr>
<td>Mortality</td>
<td>39/334 11%</td>
<td>20/110 18%</td>
<td>0.53 (0.26 to 1.08)</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Progress in the management of disease in the newborn has carried with it a recognition of the substantial risk of injury to the immature nervous system. The aspiration to localise and prognosticate from neurological signs in the early newborn period is easily understood. The problem is that the signs available to be discerned are in themselves usually insufficient to allow precision. In addition, the child grows and develops, the range and complexity of skills are constantly changing, and the manifestations of the lesion(s) alters, or may become silent, often to reappear later as a different but nevertheless highly significant impairment.

The evaluation of the newborn nervous system was originally based upon concepts learnt from adult neurology. The baby was seen as demonstrating little or no cortical or cerebellar activity and the study of primary reflexes predominated. The approach of adult neurology, with emphasis on localisation of the lesion, becomes less applicable in the younger child. In the newborn period, focal insults to the brain will often give rise to generalised disturbances and, contrarily, generalised disturbances may show focal deviations. Recognition of these phenomena has led to a progression from the concept of a localisation based neurology to one which sees the infant displaying a neurological/behavioural repertoire. Over the past several decades Saint Anne Dargassies, Prechtl, Amiel Tison, Brazelton, Dubowitz, and others have, through meticulous study, done much to illuminate this area. Through these studies, awareness of the importance of the behavioural state of the baby, as well as the more detailed neurological items has evolved.

The book is not designed to be a text of neonatal neurology and readers looking for discussion of neurological disease states will be disappointed. As a description of a comprehensive and easily applied system of neonatal neurological examination the new edition succeeds admirably.

Table 1 Effect of antenatal steroids on respiratory distress syndrome (RDS) in premature twins

<table>
<thead>
<tr>
<th>Outcome measure</th>
<th>Optimal antenatal steroids</th>
<th>No antenatal steroids</th>
<th>Odds ratio (95% CI)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDS</td>
<td>184/310 59%</td>
<td>79/106 75%</td>
<td>0.49 (0.27 to 0.91)</td>
<td>0.02</td>
</tr>
<tr>
<td>Surfactant use</td>
<td>162/333 49%</td>
<td>87/108 62%</td>
<td>0.58 (0.34 to 0.99)</td>
<td>0.05</td>
</tr>
<tr>
<td>Mortality</td>
<td>39/334 11%</td>
<td>20/110 18%</td>
<td>0.53 (0.26 to 1.08)</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data used for this study came from the Australia and New Zealand Neonatal Network.

BOOK REVIEW

Using a modified nasopharyngeal airway in Pierre Robin syndrome

MARIA GALOGAVROU and KEITH FOOTE

Arch Dis Child Fetal Neonatal Ed 2001 85: F75
doi: 10.1136/fn.85.1.F75d

Updated information and services can be found at:
http://fn.bmj.com/content/85/1/F75.5

These include:

References
This article cites 1 articles, 0 of which you can access for free at:
http://fn.bmj.com/content/85/1/F75.5#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/