Oxygen saturation during the first 24 hours of life

L M O’Brien, V A Stebbens, C F Poets, E G Heycock, D P Southall

Abstract

Aim—To determine normative data for arterial oxygen saturation, measured by pulse oximetry (SpO₂), in healthy full-term infants throughout their first 24 hours of life.

Methods—Long-term recordings of SpO₂, pulse waveform, and breathing movements were made on 90 infants. Recordings were analysed for baseline SpO₂, episodes of desaturation (SpO₂ < 80%), apnoeic pauses of ≥ four seconds, and periodic apnoea (≥ three apnoeic pauses, each separated by ≤ 19 breaths).

Results—Median baseline SpO₂ was 98.3% (range 88.7–100). Longitudinal analysis at four-hour intervals showed that SpO₂ remained stable until 20–24 hours of age, when it became significantly lower (p < 0.03). Episodic desaturations were identified in 23 recordings. Nine prolonged desaturations (SpO₂ < 80% for ≥ 20 seconds) were identified in six recordings. Four desaturations fell to ≤ 60%. Periodic apnoea was identified in 60% of recordings.

Conclusion—The range of SpO₂ during the first 24 hours of life is similar to that found previously during the first month of life. The clinical significance of the prolonged episodes of desaturation observed justifies further investigation.

Keywords: pulse oximetry; neonate; oxygen saturation; apnoea

Pulse oximetry is widely used in clinical practice to obtain data on arterial oxygen saturation (SpO₂). It is a non-invasive technique which requires no calibration and is able to provide instantaneous data, which have been shown to correlate well with blood gas measurements.¹ ² ³

This department has published information on SpO₂ in healthy full-term infants from 2 days of life throughout the first³ ⁴ and second⁵ months of life, during infancy,⁶ and the rest of childhood.⁷ No infants younger than 24 hours of age were included in these studies. Other investigators have obtained data on SpO₂ from infants immediately after delivery.⁸ ⁹ ¹¹ These measurements were, however, not continuous, which is unfortunate, as many cardiorespiratory changes occur during the first postnatal day. We therefore performed a study to establish oxygen saturation in healthy full-term infants during their first 24 hours of life. To our knowledge, this study provides a continuum of information on SpO₂ values not previously available for this age group.

Subjects and methods

Infants were recruited during the third trimester of pregnancy, from mothers booked to deliver at the North Staffordshire Maternity Hospital. Mothers were selected by a systematic sampling procedure, and informed parental consent was obtained during pregnancy. The study was approved by the local research ethics committee. Infants were only studied if they were born after 37 weeks of gestation and were apparently healthy upon delivery.

Recordings were made of arterial oxygen saturation as measured by pulse oximetry (SpO₂; Nellcor N200/Mallinckrodt, St Louis, Missouri, USA; modified to produce beat to beat measurements), pulse plethysmograph for validation of the SpO₂ signal, and breathing movements from a pressure capsule (Graseby Medical, Watford, Herts, UK) taped to the abdominal wall. All monitor alarms were muted. These data were recorded on to portable computers (Apple Inc, Cupertino, CA, USA) and subsequently downloaded and printed on to paper using a thermal printer (Graphitec, Tokyo, Japan). The recordings were printed at 3.1 mm/s.

The printouts were analysed by an experienced research assistant without knowledge of the infants’ ages at the time of the recordings. The analysis was performed in accordance with previously published studies.⁸ Briefly, analysis of baseline SpO₂ values was restricted to periods of regular pattern breathing (RPB). Apnoeic pauses of ≥ four seconds were identified in RPB, non-regular pattern breathing (NRPB), and periodic apnoea (PA). These pauses were split into three groups according to their lengths: 4–7.9 seconds, 8–11.9 seconds, and ≥ 12 seconds. We also identified pauses of ≥ 20 seconds and looked at surrounding patterns.

PA, defined as the occurrence of ≥ three apnoeic pauses each separated by ≤ 19 breaths, was identified. Apnoeas of ≤ 10 seconds in duration are common in infancy. Pauses in breathing of ≥ four seconds were chosen to define an apnoeic episode in order to maintain comparability with previous studies.⁶ ⁷ Other authors include pauses of breathing from ≥ two seconds,¹² ≥ five seconds,¹³ ¹⁴ ¹⁶ or ≥ six seconds in duration.¹⁶ Apnoea has arbitrarily been defined as prolonged if there is cessation of breathing for ≥ 20 seconds, or for a shorter period if it is associated with bradycardia, cyanosis, or pallor.¹⁷

Episodic desaturations (SpO₂ ≤ 80%) were identified and their duration recorded. Episodic desaturations that occurred within 12 seconds of the start of an apnoeic pause were also identified.¹⁵

References:

After overall measurement, the data were assigned to age intervals to allow sequential analysis; there were therefore six intervals each representing a four hour stage. These intervals represented the postnatal age of the infant. Variables were calculated for each age interval. Results are presented as medians and ranges. Statistical significance was assessed using the Mann-Whitney U test.

Results
Ninety infants were successfully studied (49 boys). Of these, 71 were born by unassisted vaginal delivery, nine by assisted delivery, and 10 by caesarean section (four emergency). Eight infants received bag and mask resuscitation at delivery.

The median age at the commencement of recordings was one hour, and the median duration of recordings was 21.5 hours (range 4.5–23.4). The median duration of RPB was 3.5 hours (range 0.75–6.5). Median baseline SpO₂, as measured during RPB, was 98.3% (range 88.7–100). Analysis by intervals of four hours showed that median SpO₂ was significantly (p < 0.03) lower during the 20–24 hour interval than any other age interval. Although SpO₂ was at its highest value during the first four hours after delivery, this was not significantly different (table 1).

SpO₂ levels in recordings of infants who received bag and mask resuscitation were significantly lower during the 24 hour period (p < 0.03), compared with the other recordings. When analysed in intervals of four hours, SpO₂ was found to be significantly lower in these infants during the first eight hours of life (p < 0.05) and also at 20–24 hours of age (p = 0.006).

Seven recordings were excluded from analysis of episodic desaturation. These had low overall baseline SpO₂ values (median 91.5%) and saturation was ≤ 80% in a proportion of their regular breathing episodes; the lowest SpO₂ value within an episode of RPB had a median value of 81.2% (range 78.1–88.6). Signal at ≤ 80% in these episodes did not therefore represent episodic desaturation. If included, it would have inflated the values for the variable artificially, and would have misrepresented the clinical state of these infants; although they had a low baseline saturation, they were not necessarily experiencing falls within it. None of these seven infants exhibited falls in SpO₂ of ≤ 60%. This subgroup of infants included five who were distressed (two received bag and mask resuscitation) and two who were delivered by caesarean section; only one of the seven infants had an unremarkable delivery.

Eighty three desaturations were observed in 23 (26%) recordings. The median number of desaturations, corrected to the median duration of signal (21.5 hours), was 0 (range 0–17.4), with the 90th centile at 4.1. Forty three (52%) of these desaturations occurred without relation to an apnoeic pause; the median duration of these desaturations was 9.3 seconds (range 0.5–286.8). This compared with a median of 0.8 seconds (range 0.3–89.6) in desaturations associated with an apnoeic pause. The longest desaturation observed was therefore 4.8 minutes; for much of this time (4.0 minutes) the SpO₂ was < 60%. In addition to the measured artefact free desaturation, there were four brief periods of movement artefact when the infant was probably attempting to improve respiratory function (fig 1). There was no associated apnoeic pause, and this was the only desaturation identified during the recording of this infant. Clinical cyanosis was not reported.

Prolonged desaturations (SpO₂ < 80% for ≥ 20 seconds) were identified in six recordings. There were nine such desaturations, the median duration being 41.6 seconds (range 20.8–286.8). Three of the latter desaturations showed falls in SpO₂ to ≤ 60%, as did one other shorter desaturation. The median duration of these desaturations to ≤ 60% was 14

Table 1 Recording results in the first 24 hours after delivery divided into six four hour stages

<table>
<thead>
<tr>
<th></th>
<th>0–4</th>
<th>4–8</th>
<th>8–12</th>
<th>12–16</th>
<th>16–20</th>
<th>20–24</th>
<th>0–24</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of recordings</td>
<td>85</td>
<td>85</td>
<td>86</td>
<td>82</td>
<td>74</td>
<td>68</td>
<td>90</td>
</tr>
<tr>
<td>Baseline SpO₂ (%)</td>
<td>99.0</td>
<td>98.4</td>
<td>98.6</td>
<td>98.1</td>
<td>98.3</td>
<td>97.8</td>
<td>98.3</td>
</tr>
<tr>
<td>(88.4–100)</td>
<td>(87.6–100)</td>
<td>(78.1–100)</td>
<td>(79.6–100)</td>
<td>(81.2–100)</td>
<td>(83.3–100)</td>
<td>(88.7–100)</td>
<td></td>
</tr>
<tr>
<td>Recordings with desaturations (%)</td>
<td>25</td>
<td>53</td>
<td>20</td>
<td>50</td>
<td>54</td>
<td>82</td>
<td>48</td>
</tr>
<tr>
<td>Desaturations associated with a pause (%)</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>9</td>
<td>40</td>
</tr>
<tr>
<td>Apnoeic pauses associated with a desaturation (%)</td>
<td>20</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td>23</td>
<td>27</td>
<td>60</td>
</tr>
<tr>
<td>Recordings containing periodic apnoea (%)</td>
<td>20</td>
<td>31</td>
<td>31</td>
<td>26</td>
<td>23</td>
<td>27</td>
<td>60</td>
</tr>
</tbody>
</table>

Baseline SpO₂ values given as median (range).

Figure 1 A severe and prolonged arterial oxygen desaturation.
Oxygen saturation in the neonate

reported for the first week of life, were unexpected and remain unexplained.

observed during the 20–24 hour age interval

SpO2 to have become cyanotic. Three of the four

episodic desaturations that exhibited falls in

SpO2, to ≤ 60% occurred without association

with an apnoeic pause.

Only one recording contained episodes of

desaturation (n = 4) during RPB, and these all

occurred immediately after apnoeic pauses. During

NRPB, only 37% of episodic desaturations

was associated with apnoeic pauses.

A minority of apnoeic pauses was associated

with an episodic desaturation. In RPB there

was a total of four apnoeic pauses (0.3% of all

pauses), which were associated with an

episodic desaturation, compared with 25 apnoeic

pauses (0.3%) in non-regular breathing and 11

apnoeic pauses (0.7%) in PA with such desaturations. Overall, only 0.4% of apnoeic

pauses was associated with a desaturation. PA was the

only breathing pattern to show desaturations

associated with apnoeic pauses in the first four

hours of life, although such pauses were only

identified in one infant.

Nine infants showed 10 apnoeic pauses of

≥ 20 seconds in duration, the longest of which

was 26.9 seconds. Two of these apnoeas were

identified in RPB, four in NRPB, and four in

PA. Only one apnoea, the longest, was

associated with a desaturation; this resulted in a

fall in SpO2 to below 60% for 16 seconds. Of the

infants who exhibited apnoeic pauses ≥ 20

seconds, there were significantly (p = 0.03)

more who received bag and mask resuscitation

at delivery.

PA was identified in 60% of recordings. In

these recordings the median duration was 3.4

minutes (range 0.4–93.9). There were no

significant differences between the median

durations of PA when analysis was performed

across intervals of four hours. The median

number of episodes of PA per recording was

four (range 1–55); the longest episode of PA

was 5.3 minutes.

Discussion

We have defined reference data for aspects of

oxygen saturation in healthy full term infants

during their first 24 hours of life. Median base-

lane SpO2 values were higher than those

reported for the first week of life, and were

relatively stable across the first 24 hours. The

median value at 20–24 hours of life (97.8%) is

similar to that previously reported for healthy

full term infants between 2 and 7 days of age

(97.6%), using similar experimental methods.

Lower SpO2 values in the period after bag

and mask resuscitation at birth have not been

reported previously. They are, perhaps, not

surprising as the necessity to resuscitate an

infant may reflect lower lung volumes after

delivery and this may continue to be reflected

in the significantly lower saturations measured

during the first eight hours of life. A mismatch-

ing of ventilation and perfusion in areas of atel-

ectasis can result in right to left shunting within

the lung. The significantly lower values in SpO2

observed during the 20–24 hour age interval

were unexpected and remain unexplained.

Key messages

- During the first day of life, healthy term

infants have baseline SpO2 values that are

very similar to those of older infants, with

a range from 89–100%

- Four healthy term infants each showed a

severe oxygen desaturation; three of these

events were not associated with an

apnoeic pause

- Apnoeic pauses, experienced by most of

these infants, are rarely associated with a

fall in oxygen saturation to <80%

- Nine infants had 10 apnoeic pauses of

≥20 seconds, only one of which was

associated with a fall in oxygen saturation

to ≤80%

Episodes of desaturation, during which SpO2

dropped to ≤ 80%, were relatively uncommon,

with only 26% of recordings containing such

episodes. Only 20% of recordings contained

episodic desaturations ≥ four seconds in dura-

tion. The four infants who exhibited severe

desaturations (SpO2 ≤ 60%) were all reported
to have been feeding, and these infants may

have had difficulty coordinating breathing and

feeding. None of the previous studies that

monitored SpO2 levels during the first postnatal

day reported data on episodic desaturations.

The desaturations that occurred without

association with an apnoeic pause were more

frequent and of longer duration than those that

occurred in relation to a pause. This may
suggest that ventilation/perfusion mismatching
or obstructive apnoea have a role to play, although
airflow was not measured in this study so
obstructive apnoea could not be identified.

Hypoventilation may be a contributing factor
in some desaturations, particularly as this has
been observed in newborn infants during feeding.

Our methodology does not enable quantitative

analyses to be undertaken on the

breathing pattern. Rapid depletion of small

lung oxygen stores after an apnoeic pause may
only partly explain the desaturations observed,

particularly when the desaturation is severe, as
the circulation time for blood in infants is rapid
(five to nine seconds). The proportion of
apnoeic pauses of ≥ four seconds associated
with a desaturation (0.4%) also suggests that
apnoeas are not the only cause of desaturation
during the first day of life.

Although there is a wealth of information

describing pauses in breathing as “apnoeas”

when the duration of the pause is between two

and six seconds, the clinician is more interested
in apnoeas lasting ≥ 20 seconds. Very few infants (n = 9) in this study exhibited
this phenomenon, which is in accordance with
other studies performed within a few days of
birth. However, three of the eight infants

receiving bag and mask resuscitation had
apnoeic pauses ≥ 20 seconds. The significance
of bag and mask resuscitation to prolonged
apnoeic pauses is not clear, although the proc-
erss of resuscitation may affect lung mechanics,
particularly in infants who have never breathed and whose lungs still contain fluid.

Some previous studies have shown no evidence of PA before about 48 hours of age. The present study is in agreement with that of Fenner et al in that PA was observed in full-term infants less than 48 hours old. In contrast with the results of Fenner et al, who found PA in 41% of infants, the present study found PA to occur in most of the infants studied (60%). Different definitions of PA may have contributed to the discrepancy between reports.

In conclusion, reference values for baseline SpO2 and its relation to breathing pattern have been obtained in 90 healthy full-term infants throughout the first 24 hours of life. Baseline oxygenation was relatively stable during the first postnatal day, slightly higher than we have shown in healthy full-term infants during their first month of life, but lower than in older infants. Episodic desaturations were apparent in 26% of infants studied, and several infants exhibited severe and prolonged episodes, most of which occurred without association with an apneic pause. The clinical significance of these episodes remains to be determined. PA has been identified in the breathing pattern of full-term infants during their first day of life.

Our thanks go to the parents who allowed us to monitor their babies, the midwifery staff of the North Staffordshire Hospital, and Mrs Jackie Kelly who recorded the births. Thanks also to Mrs Fozia Hussain who assisted with the data collection. The recording/analysis equipment and consumables were provided by financial contributions from Babes in Arms, Cot Death to Mrs Fozia Hussain who assisted with the data collection. The present study is in agreement with the results of Fenner et al, who found PA in 41% of infants, the present study found PA to occur in most of the infants studied (60%). Different definitions of PA may have contributed to the discrepancy between reports.

In conclusion, reference values for baseline SpO2 and its relation to breathing pattern have been obtained in 90 healthy full-term infants throughout the first 24 hours of life. Baseline oxygenation was relatively stable during the first postnatal day, slightly higher than we have shown in healthy full-term infants during their first month of life, but lower than in older infants. Episodic desaturations were apparent in 26% of infants studied, and several infants exhibited severe and prolonged episodes, most of which occurred without association with an apneic pause. The clinical significance of these episodes remains to be determined. PA has been identified in the breathing pattern of full-term infants during their first day of life.
Oxygen saturation during the first 24 hours of life

L M O'Brien, V A Stebbens, C F Poets, E G Heycock and D P Southall

Arch Dis Child Fetal Neonatal Ed 2000 83: F35-F38
doi: 10.1136/fn.83.1.F35

Updated information and services can be found at: http://fn.bmj.com/content/83/1/F35

These include:

References
This article cites 26 articles, 11 of which you can access for free at: http://fn.bmj.com/content/83/1/F35#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Airway biology (108)

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/