Is some white matter damage in preterm neonates induced by a human pestivirus?

We offer the hypothesis that some forms of cerebral white matter damage (WMD) in preterm neonates might be caused by transplacental viral infection of the fetus during the first or second trimester of pregnancy. Potts and colleagues speculated on the possible role of a human pestivirus (PV) in the aetiology of congenital microcephaly. We suggest PV might be a candidate virus for some form of WMD. We further offer our view that a virus induced cytokine cascade might place the fetus at double jeopardy—that is, disturb white matter development and lead to preterm birth.

Virus related WMD

White matter damage is the most important predictor of childhood neuromotor disability among those born preterm. About 50% of infants who have echolucent zones in the periventricular white matter or ventriculomegaly on preterm ultrasound scans subsequently develop childhood neuromotor disability among those born preterm. About 50% of infants who have echolucent zones on early neonatal cranial ultrasound scans subsequently develop periventricular echodensities on neonatal cranial ultrasound scan, as focal, multifocal, or diffuse WMD, make multiple aetiologies likely. Some forms of WMD might be related to a hypoxic–ischaemic insult, but others might be associated with infection.

Four types of WMD can be distinguished on the basis of their location, histological patterns, and ultrasonographic appearance. The first two forms comprise unifocal haemorrhagic infarctions, leading to periventricular echodensities on neonatal cranial ultrasound images, and multifocal necroses, leading to hypoechoic ultrasound images often described as “periventricular leucomalacia” (PVL). Current textbooks focus on FMD, both on histological examination and neonatal cranial ultrasound scan, as focal, multifocal, or diffuse WMD, make multiple aetiologies likely. Some forms of WMD might be related to a hypoxic–ischaemic insult, but others might be associated with infection.

The two remaining diffuse WMD subtypes are histologically defined by either astrogliosis or pyknotic nuclei. These diffuse forms of WMD are not readily identified on early neonatal cranial ultrasound images. Their tendency to impair myelination probably results in ventriculomegaly on late neonatal ultrasound scans. Such a diffuse process raises the possibility that either or both is induced by a generalised infection of the developing brain.

White matter involvement is common in viral infections of the central nervous system. White matter damage, disturbances of myelination, and subsequent microcephaly follow herpes simplex encephalitis, exposure to rubella virus in utero, and canine distemper virus infection. Microcephaly, dysmyelination, glial proliferation, ventricular enlargement, and extensive necroses in the white matter are associated with pestivirus infection. Because these types of damage so closely resemble those of WMD in preterm neonates, we suggest that human pestivirus is a likely mediator of virus induced WMD.

If an unidentified virus infection during pregnancy indeed leads to transplacental infection of the fetus and subsequent WMD, the subclinical nature of some virus infections during pregnancy might explain why a viral cause of WMD has not yet been identified.

Pestivirus infections

The two major PVs in animals are border disease virus (BDV) and bovine virus diarrhoea virus (BVDV). Pestivirus infections were thought to occur exclusively in animals until Giangaspero and coworkers recently reported the presence of specific anti-BVDV antibodies in up to 87% of animal handlers and veterinarians. Since then, lower prevalences of 15–16% have been reported in adults. Among children under 2 years, pestivirus antigens were present in 24% of specimens from diarrhoea episodes that could not be explained by more common enteric pathogens. Thus pestivirus infections occur in humans, although infection during pregnancy and a possible association with preterm birth or WMD have not yet been investigated.

Exposure to the pestivirus BDV of lambs leads to hypomyelination of their brains. Hypomyelination is a symptom of some diffuse forms of WMD. Infection with the pestivirus BVDV leads to necroses and cysts in the periventricular white matter and enlarged ventricles in lamb fetuses. All of these are expressions of WMD in preterm human babies.

Infection with BDV is accompanied by a decrease in thyroid hormone activity in lambs. Low thyroid hormone values are also an important predictor of maldevelopment among preterm infants. After adjustment for gestational age, Reuss and colleagues found an 11-fold increased risk of disabling cerebral palsy among preterm infants with severe hypothyroxaemia. What is still unclear is whether low thyroid hormone values are the cause of the brain damage or merely an indicator of illness severity and/or immaturity related vulnerability, which conveys risk information above and beyond that given by gestational age information.

Does a virus induced cytokine cascade cause both preterm birth and WMD?

A common antecedent of both preterm birth and WMD could serve as a likely explanation for why WMD is more common among preterm than term infants. Transplacental virus infection early in pregnancy potentially fulfils the criteria of such a common antecedent (fig 1).

One in four women with asymptomatic shedding of herpes simplex virus at the onset of labour gave birth before the completion of 37 weeks of gestation; this percentage was only 12% among unaffected controls. In two other studies not involving uninfected newborns for comparison,
This work was supported by National Institute for Neurologic Disorders and Stroke Grant NS 27306 and United Cerebral Palsy Research and Educational Foundation Grant R21-94-01.

OLAF DAMMANN ALAN LEVITT

Neuroepidemiology Unit, Department of Neurology, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
E-mail dammann_o@a1.tch.harvard.edu


Is some white matter damage in preterm neonates induced by a human pestivirus?

OLAF DAMMANN and ALAN LEVITON

Arch Dis Child Fetal Neonatal Ed 1998 78: F230-F231
doi: 10.1136/fn.78.3.F230

Updated information and services can be found at:
http://fn.bmj.com/content/78/3/F230

These include:

References
This article cites 38 articles, 7 of which you can access for free at:
http://fn.bmj.com/content/78/3/F230#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Clinical diagnostic tests (720)
- Radiology (692)
- Radiology (diagnostics) (637)
- Child health (1515)
- Pregnancy (1521)
- Reproductive medicine (1433)
- Cerebral palsy (78)
- Diarrhoea (9)
- Immunology (including allergy) (393)
- Infection (neurology) (35)
- Poisoning (12)
- Surgery (69)
- Surgical diagnostic tests (65)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/