Hypoxia, ischaemia, and apoptosis

Apoptosis, meaning "the falling of leaves," was coined in 1976 by Kerr, Wyllie, and Currie to describe tumour cells undergoing a different and unusual mode of death, with the implication that these cells were dying quietly, like autumn leaves.1 It is now understood that these apoptotic cells were demonstrating a physiological cell death that is ubiquitous and essential to the development and survival of multicellular organisms.2 This mode of death involves the activation of an intrinsic, constitutive "death programme" that can be triggered by multiple stimuli, including loss of trophic factors, activation of specific membrane receptors, viral infection and cellular injury resulting from insults such as hypoxia-ischaemia or ionising radiation. Apoptotic death is distinct from necrosis, requiring time, energy, and in some cases, gene transcription and translation.

Apoptosis and necrosis
Apoptosis was originally distinguished from necrosis on morphological grounds. Cells undergoing necrosis due to an overwhelming insult (such as complete mitochondrial inhibition), swell as their membrane pumps fail to maintain ionic homeostasis in a process that does not require energy or gene transcription. Organelles become disrupted and finally the cell bursts, spilling the cytoplasmic content into the extracellular space. Phagocytes migrate to the site of injury and remove the debris with all the hallmarks of a classic inflammatory response.

Apoptotic cells undergo a very different process. They shrink and the nucleus becomes small and dense. The DNA breaks into discrete masses and the nuclear membrane folds around the pieces like shrink wrap. At the same time, the plasma membrane invaginates, resulting in cytoplasmic vacuolation. Eventually the cell separates into multiple discrete apoptotic bodies which are phagocyted primarily by healthy neighbouring cells. The lack of an inflammatory response and the fact that apoptosis occurs physiologically during normal development gives an impression of individual cells which die altruistically for the good of the whole organism.3 Apoptosis is an active cellular process that requires specific biochemical pathways, energy consumption, and sometimes gene transcription.

Worms and death
Fittingly perhaps, the cellular machinery of the apoptotic death programme began to be understood largely through studies of a worm—the nematode Caenorhabditis elegans. This convenient organism has only 1090 cells of which 131 undergo apoptosis during normal development. As the worms are transparent, the cells can be viewed as they divide, differentiate, and die. In elegant studies of genetic mutants Horvitz and colleagues were able to define three genes (the C elegans death, or ced family), involved in this developmentally programmed cell death. Disruption of any of these genes produced either lethal or highly abnormal phenotypes.4

Two genes, ced-3 and ced-4, are essential for the execution of the apoptotic programme. Ced-3 encodes a cysteine protease that shares a significant degree of homology with interleukin-1β converting enzyme (ICE), a protease that cleaves pro-interleukin-1β into active interleukin-1β. ICE can induce apoptosis when overexpressed in neuronal cells.5 The function of ced-4 is not yet clearly defined. The third gene, ced-9, prevents apoptosis, and is homologous to the mammalian gene bcl-2, which is implicated in the pathogenesis of B cell cancers.6 Indeed, bcl-2 can substitute ced-9 in mutant worms and rescue the phenotype from excess apoptosis.7
These discoveries demonstrated that apoptosis is a highly conserved, genetically regulated process that is fundamental to normal development in organisms as diverse as worms and humans.

Death by default: apoptosis in the multicellular organism
Insight into the widespread importance of programmed cell death came from the demonstration by Raff that cells will always undergo apoptosis unless they receive "survival signals" from other cells.2 They showed that cells in culture would universally undergo apoptosis unless either they were maintained at high density or the culture medium was artificially supplemented with appropriate trophic factors. This suggested that proteins, normally growth factors such as insulin-like growth factor-1 (IGF-1) or members of the neurotrophin family, are secreted in an autocrine or paracrine manner, and are essential to prevent execution of the apoptotic death programme. If cells are programmed to die as soon as they lose these survival signals, the surprising conclusion must be that death, not survival, is the default pathway for cells in a multicellular organism.

The death of cells deprived of signals from their neighbours provides an elegant mechanism for both the control of normal morphogenesis and the prevention of cancers: a cell population which grows beyond its "correct" size or location will run out of trophic factors and die. A striking example is the formation of digits from the primitive limb bud. Interdigital cells in the chick limb bud die by apoptosis at a precisely controlled stage of development under the control of growth factors of the transforming growth factor β family. Chickens thus develop feet with digits; ducks, which retain webbed feet, do not express these growth factors and do not develop interdigital apoptosis.8 Brain cells which fail to make proper synaptic connections die by apoptosis and as many as 50% of cells in some parts of the brain may die in this way during normal cerebral development.9 Apoptosis is thus the chisel that sculpts the complex organism. In newborn infants developmental processes that involve the apoptotic death of unwanted cells are at their height, and cells may be particularly susceptible to apoptosis at this age.

Apoptosis in disease
In addition to being a primary mechanism for regulating normal development, apoptosis is involved in the patho-
genesis of many diseases. An increasing number of disorders have been identified that involve excess apoptotic
cell death. These include AIDS, where lymphocyte death is
triggered by HIV; neurodegenerative disorders, such as
spinal muscular atrophy and Parkinson’s disease; and
hypoxic-ischaemic cerebral death.\(^1\)

Other disorders are associated with increased cell
survival, including certain autoimmune diseases, viral
infections, and particularly cancer. The multicellular
organism requires stringent protection against the develop-
ment of tumours, and apoptosis forms a front line defence.
Cells which grow abnormally rapidly are likely to run out
of growth factors and be eliminated by apoptosis. Cellular
injury, including tumorigenic DNA damage, can trigger
the intracellular death programme. However, if an insult
creates a mutation that results in the activation of anti-apoptotic genes such as bcl-2, these cells will acquire a
survival advantage that could promote carcinogenesis.
Cancers can no longer be regarded solely as diseases of
deregulated cell division, but also as the result of a failure
in apoptotic cell removal.\(^1\)

**Triggering apoptosis**

Apoptosis can be activated by many physiological and
pathological stimuli: trophic factors such as IGF-1 bind to
tyrosine kinase receptors, and their withdrawal probably kills
by removing essential phosphorylation signals; DNA
damage can lead to the activation of the p53 tumour sup-
pressor gene which can drive the cell to apoptosis\(^2\); cells in
the immune system undergo apoptosis when activated by a
cell surface receptor, Fas/Apo-1\(^3\); tumour necrosis factor-\(\alpha\) (TNF-\(\alpha\)) activates sphingomyelinase, leading to
an increase in cytosolic concentrations of ceramide, a
potent inducer of apoptosis.\(^4\) Some agents kill by a default
mechanism: for example, different redox forms of nitric oxide induce apoptosis by different mechanisms,
only one of which involves free radical activity.\(^5\)

**Mechanisms of apoptosis**

The intracellular mechanisms of apoptosis have not been
fully elucidated, although an intimate connection with
control of the cell cycle is evident in carcinogenesis: onco-
genese such as c-fos, c-jun, and c-myc can trigger apoptosis
and promote cell division while inactivation of the pro-
apoptotic p53 tumour suppressor gene is a frequent
marker of human neoplasia.\(^6\) If death is the default
pathway of all cells, then the apoptotic machinery must be
permanently in place and poised to act; indeed, in many
cases apoptosis can proceed in the absence of de novo
messenger RNA or protein synthesis. Execution of this
pathway differs between cell types and involves poorly
understood second messengers such as accumulation of
calcium or cyclic AMP, or activation of protein kinase C.\(^7\)

One of the earliest signals in the apoptotic cascade is
the activation of specific cysteine proteases, such as ICE and
ced-3. These enzymes are activated very soon after the
death trigger and cleave specific cellular targets, such as
poly-ADP-ribose polymerase.\(^8\) A common feature of final
apoptotic execution is the degradation of genomic DNA by
an endonuclease. This leads to internucleosomal cleavage
of DNA into fragments differing by 200 base pairs,
producing characteristic “ladders” on gel electrophoresis.\(^9\)

**Apoptosis in hypoxic-ischaemic cerebral injury**

It has been known for some years that newborn infants
subjected to transient hypoxia-ischaemia during an epi-
sode of birth asphyxia are apparently relatively normal
soon after resuscitation, but show evidence of delayed
cerebral injury some hours later,\(^10\) the magnitude of which
predicts the severity of later neurodevelopmental impair-
ment.\(^11\) This biphasic process of cerebral injury has been
reproduced in several animal models.\(^12\)\(^13\)

The mechanism of delayed injury is unclear, but in the
brains of infants dying after birth asphyxia cells can be
detected which show the hallmarks of apoptotic death:
neural condensation and fragmentation (pyknosis and
karyorrhexis) with preservation of the plasma and nuclear
membranes.\(^14\) This has led to the hypothesis that inappro-
priate activation of the apoptotic programme accounts for
at least part of the delayed cell death seen after transient
hypoxia-ischaemia.

Evidence is now accumulating to support this conten-
tion. The features of apoptosis can be observed following
hypoxic-ischaemic injury in newborn piglets,\(^15\) and in both
immature\(^16\)\(^17\)\(^18\) and adult rats,\(^19\)\(^20\) as well as in studies of in
vitro models of neuronal hypoxia.\(^21\) In newborn piglets
which develop delayed cerebral injury after hypoxia-
isaemia a large number of cells are apoptotic, and there
is a linear relation between the severity of the hypoxic-
isaemic injury (measured by the decline in cerebral ATP
concentrations during hypoxia-isaemia) and the propor-
tion of apoptotic cells seen 48 hours later.\(^22\)

The mechanism by which transient hypoxia-isaemia
induces apoptosis is unknown. It could be several different
or overlapping pathways, including DNA damage, in-
creases in intracellular calcium concentrations or other
forms of intracellular disorganization. Survival signals
might be reduced by impaired secretion from injured cells,
damage to membrane receptors, or interruption of intrac-
ellular signalling pathways. Known agents of hypoxic-
ischaemic damage such as glutamate or nitric oxide can
under some conditions induce apoptosis,\(^23\) suggesting
that cells which avoid rapid necrosis during the initial insult
may instead be triggered to undergo apoptosis some hours
later.

Significant numbers of necrotic cells are also present
after hypoxia-isaemia, but the distinction between these
two modes of death is demonstrated in newborn piglets by
differences in the response to therapeutic manipulations.
A mild (3°C) reduction in brain temperature in the 12 hours
following resuscitation significantly reduced the observed
proportion of apoptotic cells but made no difference to the
amount of necrosis.\(^24\)

**Therapeutic inhibition of apoptosis**

Anti-apoptotic agents reduce neuronal loss following
experimental cerebral hypoxia-isaemia, suggesting that
(for a time at least) the apoptotic process is reversible: both
IGF-1 and the protein synthesis inhibitor cycloheximide,
reduce cerebral injury if administered soon after the
insult.\(^25\)\(^26\) Hypothermia reduces apoptosis by an unknown
action, presumably related to the reduction of some
relevant aspect of cellular metabolism which prevents the
cascade from reaching completion.\(^27\) The evidence that
apoptosis triggered by hypoxia-isaemia may be inter-
rupted suggests that anti-apoptotic agents or strategies
might be useful neural rescue therapies when administered
soon after a hypoxic-isaemic insult.

**Conclusion**

Rapid progress has been made in understanding the
mechanisms of cell death, and an accumulating body of
evidence indicates a major role for apoptosis in disease.
Apoptosis is a highly regulated physiological process,
which suggests new avenues for research into therapies for
hypoxic-isaemic cerebral injury and other pathological
processes. As the molecular mechanisms of apoptosis are
unravelled, it should become possible to design precise experiments to implement these findings in clinically applicable ways.

Research in the Weston Laboratory is generously supported by The Weston Foundation, The Wellcome Trust, Action Research, The Sir Jules Thorn Trust and The British Heart Foundation.

H MEHMET
AD EDWARDS

Weston Laboratory,
Department of Paediatrics and Neonatal Medicine,
Royal Postgraduate Medical School,
Hammersmith Hospital,
Du Cane Road,
London W12 ONN

Hypoxia, ischaemia, and apoptosis.

H Mehmet and A D Edwards

Arch Dis Child Fetal Neonatal Ed 1996 75: F73-F75
doi: 10.1136/fn.75.2.F73

Updated information and services can be found at:
http://fn.bmj.com/content/75/2/F73.citation

Email alerting service

These include:
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/