LETTERS TO
THE EDITOR

Model to identify potentially preventable cerebral palsy of intrapartum origin

EDITOR,—It is highly desirable to identify potentially preventable intrapartum cerebral palsy, even retrospectively, and I congratulate Gaffney et al 1 on attempting to create such a model for identification. They propose a stepwise process in which: (i) cases with recognised postneonatal and prenatal causes are excluded; (ii) signs compatible with intrapartum brain damage are sought, and if present; (iii) intrapartum care is evaluated according to predefined standards. I have no authority to evaluate standards of intrapartum care, but am concerned that their study suggests a degree of complacency concerning the possibility of retrospectively identifying an intrapartum cause in individual cases which current knowledge cannot support, and consequently, that they calculate that 12.4% of cerebral palsy cases are potentially preventable in the intrapartum period.

Assignment of a postneonatal cause for cerebral palsy is straightforward, requiring recognition of a potentially brain damaging event. For an antenatal or observable prenatal neurological abnormality. In contrast, these are cogent reasons why antepartum causes may frequently be missed, and in a proportion of these, the cause is likely to be assigned to the intrapartum period.

The data supplied by Gaffney et al confirm the difficulty of assigning the timing of cause. For 45% ([87 + 8/210]) of cases, no postneonatal, intrapartum, or prepartum cause was recognised. These cases are most likely to be the result of an unidentified prepartum cause. A proportion of those cases with an unrecognised prepartum cause may be less tolerant of the stress of labour and therefore likely to have abnormal cardiocotographic, depressed Apgar scores, and abnormal neurological function. Unfortunately, no intrapartum or neonatal signs specifically indicate that brain damage has occurred during delivery.

Ideally, the same criteria required for assigning a postneonatal cause should be required for an intrapartum one—that is, the presence of a potentially brain damaging event or illness following neurological normality. Prenatal, neurological normality is difficult to ascertain, but we could apply the first criterion. In Gaffney et al’s paper only one of the 35 babies included in step 5 (with evidence of fetal distress or an obstetric emergency) had detailed evidence of an adverse intrapartum event likely to initiate brain damage. Most of the remaining 27 infants seemed only to have had signs of fetal distress, particularly bradycardia, without an intrapartum event to explain the fetal distress. Bradycardia is not defined in the paper, and is widely reported to infer any fetal heart rate measurement of <120 beats per minute. It has been suggested that a normal healthy fetus must experience a bradycardia of <60 beats per minute for 10 minutes or more before it suffers brain damage. 2 Therefore, until such bradycardia occurs, it does not constitute a brain damaging event, but, in addition to cardiocotograms, it only provides evidence of fetal intolerance to labour without identifying the cause. 3

The model therefore has a grey area: cases without a recognised cause for their cerebral palsy, for whom the first sign of a problem is intolerance to labour. For this reason the maximum likelihood we assigned to birth asphyxia as a cause of spastic cerebral palsy was very likely. 4 Events justified this caution, when, in a subsequent study we found that one of our “very likely” cases had two other similarly affected family members (one of whom had ventriculoperitoneal shunting for intrapartum asphyxia), making familial cerebral palsy more likely. 4

If cause cannot be unequivocally assigned to the intrapartum period, the precise proportion of cases potentially preventable by intrapartum care cannot be determined. A lower limit might be obtained by requiring a potentially brain damaging intrapartum event unrelated to the prior neurological status of the fetus, followed by neurological encephalopathy. This suggests that it is statistically unlikely for an independent emergency to occur in already severely compromised fetus. The data of Gaffney et al show that the lower limit is between 0 and 8 cases (0.3-8%), depending on the proportion of the eight cases who received suboptimal care for their obstetric emergency. An upper limit could be obtained by using the proportion that deemed to receive suboptimal care for their signs of fetal distress, assuming that these cases all had normal brains prior to labour in the absence of a recognised prenatal cause. I think that this upper limit will underestimate it, but until we can determine the neurological status immediately before and after labour, we cannot be more precise.

EVE BLAIR
PO Box 855
West Perth
Western Australia 6872
Australia


Drs Gaffney and Johnson comment:

Dr Blair highlights the continuing uncertainty about the time, or times, at which damage to the developing brain occurs. As we clearly point out in our paper, only a proportion of children with cerebral palsy that is prenatal in origin can be identified at present. This reflects an inability of clinicians or epidemiologists to recognise abnormal fetal brain development before the onset of labour. Many clinicians and lawyers continue to regard most cerebral palsy as being of intrapartum origin.

We are suggesting that if the principles which we outline in our paper are applied, it will be clear that most children do not have an intrapartum origin to their cerebral palsy. Further work is urgently needed in the area of antenatal cardiocotographic, the interpretation of parturition of the lower part of the cervix (an event aimed at identifying, antenatally, babies with abnormal neurological function. "Neonatal otocoustic emission screening (OAE) for deafness: psychological costs"

EDITOR,—The paper by Watkin carefully addressed many of the issues involved in establishing universal neonatal hearing screening. He found that a universal screen could produce a good yield of deafness but it was not prohibitive. He acknowledged that the priority for universal screening programmes is to increase specificity without losing sensitivity. An earlier study by Watkin and colleagues showed that most parents of deaf children would have welcomed neonatal identification. 5 How do the parents of false positive cases feel after a fairly long sequence of screening and investigation involving OAE and auditory brainstem response (ABR) testing? It would be wise to consider the experience of established universal screens such as phenylketonuria and congenital hypothyroidism. Marteau noted that the parents of neonates falsely diagnosed on routine screening as having hypothyroidism, reported great strain on their marriages and difficulties in their relationships. 6 The psychosocial effects of universal hearing screening may be similar. Such problems may arise following an initial OAE fail and subsequent confirmation of normality.

Watkin provided every mother with an explanatory leaflet before the test. Parents may require more than this. Edwards, with reference to neonatal screening in general, emphasised the need for pretest counselling and informed consent. 7 A prospective study to measure levels of parental stress in false positive cases as against pass cases and cases not screened would usefully contribute to the debate on the use of targeted or universal neonatal screening.

D V LANG
Director of Child Health,
Royal Cornwall Hospitals Trust,
Launceston Children’s Health,
Cornwall PL15 8BY


Capillary blood sampling: should the heel be warmed?

EDITOR,—From their study Dr Barker and colleagues 8 concluded that neonatal heel skin temperature was not an important factor in capillary blood sampling. While this conclusion may be valid in respect to their outcome measures (time taken to collect a standard volume of blood, the number of repeat procedures, and the infant’s behavioural response), it ignores the influence that heel capillary circulation may have on the characteristics of the sampled blood.

In 1963 I studied 28 very low birthweight infants aged 0-72 hours in relation to their capillary blood pH and haematocrit. Blood was sampled from both heels of each infant either without prior preparation, or after either gentle pressure, application of the lower part of the cervix (an event aimed at identifying, antenatally, babies with abnormal neurological function. 9

Downloaded from http://fn.bmj.com/ on June 26, 2017 - Published by group.bmj.com
Neonatal otoacoustic emission screening (OAE) for deafness: psychological costs.

D V Lang

Arch Dis Child Fetal Neonatal Ed 1996 75: F143
doi: 10.1136/fn.75.2.F143-a

Updated information and services can be found at:
http://fn.bmj.com/content/75/2/F143.2.citation

These include:
Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes