Randomised trial of early tapping in neonatal post haemorrhagic ventricular dilatation: results at 30 months

EDITOR,—In reporting the results of follow up from questionnaires to the clinicians involved in the care of children randomised after the official end of this multicentre trial, Johnson et al have highlighted an important issue. 1

Major functional loss can be identified at the age of 30 months by questionnaire, particularly when there is an unblinded comparison group. The principle question raised was whether early tapping carried an advantage over conservative treatment in the prevention of major functional loss detectable at the age of 2 years. What may be missed, however, are impairments which, at that age, are not perceived as major deviations from the norm. Abnormalities and asymmetries of tone may escape notice in a routine examination and become obvious only at a later stage. It is therefore not surprising that there are large differences between the proportions of children reported as being ‘normal’ and those having neuromotor impairment without functional loss, in children randomised before 31 January 1987 as compared with those randomised after this date.

There may also be difficulties in categorising children as multiply or singly impaired without more formal testing. Silence or poor expression at this age is often attributed to shyness – particularly in the unfamiliar context of a short clinic visit.

However, for secondary questions concerning the relationship between standard sound findings and neurodevelopment at 30 months, the nature of the impairment matters. As always, the method to be used depends on what question is being asked. In the case of Longwood et al refining the questionnaire will succeed in identifying all the impairments which are unaccompanied by functional loss at 2 years, unless the respondents are prepared to undertake a more detailed and structured assessment. By 4 years, it may well be possible to devise questionnaires which focus on these problems. I would strongly support their initiatives to evaluate alternative strategies for measuring health status in children.

LESLEY MUTCH
Public Health Research Unit,
University of Glasgow G12 8RZ


Dr Elbourne et al comment:
EDITOR,—All methods of ascertainment have advantages which need to be set against their potential problems for addressing particular questions. The advantages of a questionnaire to paediatricians asking them to provide information recorded previously in clinic records were largely pragmatic: it was cheap (trial funding had ended); did not require any special investigations; nor, in the context of a randomised controlled trial, was it likely to lead to a biased comparison between the treatment groups. However, as we and Dr Much point out, the method is probably not sensitive enough to detect impairments without functional loss in 2 year old children.

One way in which the sensitivity of this approach might be improved is by prospective completion of the questionnaire by the paediatrician at the time of a routine hospital check up. This may prompt a more detailed and structured assessment. Additional questions, which cannot normally be answered retrospectively from questionnaire return alone also be included. For instance, in the questionnaire used in the follow up of babies entered into a multicentre trial of the use of acetazolamide and fruseamide in post-haemorrhagic ventricular dilatation, we asked about limb and axial tone and reflex changes. This is completed by the paediatrician at the time of an outpatient clinic visit.

The above method for assessing groups of children will depend on the questions being addressed. In order to assess, disability at particular ages, simple questionnaires may not only be sufficiently robust, but may be more feasible in the context of follow up for large groups of geographically scattered children. The resulting increase in statistical power may more than offset the gains in accuracy which are made by using a more ‘sensitive’ test. There are many sorts of issues that we are exploring in our research assessing the advantages and disadvantages of questionnaires completed by paediatricians in clinics, health visitors, GPs and parents (and teachers for school age children).

Pro- or antioxidant activity of vitamin C in preterm infants

EDITOR,—It is with great interest that we read the paper by Silvers et al describing plasma ascorbic acid concentrations and plasma antioxidant activity in premature infants at birth, and potential implications for reactive oxygen species induced injury. The antioxidant activity of plasma was tested by measuring the inactivation of lipid peroxidation in rat brain homogenate, expressed as Dmax (plasma volume in ml required for maximum inhibition of auto-oxidation). In this in vitro system, as mentioned by the authors,1,2 lipid peroxidation is vitamin E dependent.3 It is therefore not surprising that plasma with low concentrations of caeruloplasmin (which has ferroxidase activity) and high concentrations of ascorbic acid (which can reduce free iron and initiate the formation of hydroxyl radicals through Fenton chemistry) has a low Dmax.4 Although ascorbic acid can act as a prooxidant in the presence of free transition metal ions, it is a weak pro-oxidant under other oxidative stress conditions.5 Ascorbic acid scavenges directly a variety of reactive oxygen species, including superoxide and hydroxyl radicals, suppresses the inactivation of antiproteases by oxygen generated by the myeloperoxidase-halide system, neutralises oxidants released from stimulated neutrophils in a dose dependent manner, and can regenerate membrane bound vitamin E.6,7 Ascorbic acid also has important metabolic roles — for example, in the biosynthesis of collagen, carnitine, and catecholamines.

The question, therefore, is whether in vitro observations such as the ones made by Silvers and colleagues1 are relevant to the in vivo situation. The detection of non-transferrin bound iron in plasma of preterm and term infants4 seems to support the authors’ concerns regarding a potential pro-oxidant effect of ascorbic acid in vivo. However, the various antioxidant and metabolic properties of ascorbic acid also have to be considered, and the integrated effect of high plasma ascorbic acid concentrations on the health status of preterm infants is unknown. Therefore, we caution readers not to conclude that ascorbic acid is harmful to premature infants and that ascorbic acid intake needs to be restricted in these infants. Only carefully designed and performed case-control studies of vitamin C depletion or supplementation will be able to answer these important questions.

THOMAS M BERGER
Division of Neurology, Hennawell 4, Children’s Hospital, 390 Longwood Avenue, Boston MA 02115

BALZ FREI
Boston University School of Medicine, Whitter Cardiovascular Institute, Room W-601, 80 East Concord Street, Boston MA 02118 USA


Dr Powers et al comment: There is no doubt that ascorbic acid has several important biochemical functions in the body, including, under most physiological conditions, that of antioxidant. Under the particular conditions associated with premature birth, however, which include a low plasma concentrations of plasma transferrin and caeruloplasmin, and possibly the presence of non-transferring bound iron, ascorbic acid present at high concentration would be expected to act as a pro-oxidant. Our published data suggest that this is indeed the case and it is not known if the high plasma vitamin C concentration at birth is associated with poor outcome. As further support for this argument we have recently demonstrated that at ratios of vitamin C:caeruloplasmin which we observe in premature babies at birth, vitamin C strongly inhibits the ferroxidase activity of caeruloplasmin.1

We have not suggested that vitamin C per se is harmful to premature babies, but it is difficult to ignore the fact that high plasma vitamin C concentrations in infant formula are higher than those measured in human milk, and that formulas for premature babies are even more generously supplemented. The central argument is that premature babies need high intakes of vitamin C to catabolise tyrosine completely, but our stable isotope studies of tyrosine metabolism in preterm infants show that this is not the case. Therefore, there is no good evidence that high vitamin C intakes are beneficial, there are indications that they may be harmful. We would therefore advocate a thorough re-evaluation of present recommendations for vitamin C intakes of preterm infants rather than reassurance that current intakes are appropriate.
Randomised trial of early tapping in neonatal post haemorrhagic ventricular dilatation: results at 30 months.

L. Mutch

Arch Dis Child Fetal Neonatal Ed 1995 72: F211
doi: 10.1136/fn.72.3.F211

Updated information and services can be found at:
http://fn.bmj.com/content/72/3/F211.1.citation

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/