antibody is associated with a favourable outcome.6

ELIZABETH MILLER
Immunisation Decision, PHLS Communicable Disease Surveillance Centre, 61 Colindale Avenue, London NW9 5EQ

Dr McIntosh and Professor Isaacs comment:
Our table 2 was in fact obtained from an earlier article published by the same authors in the Communicable Disease Report 4th April 1986 (CDR 86/14), which cannot be used as a reference. We had overestimated the increased numbers of children studied in Dr Miller’s 1989 Lancet article,1 and regret this. We do not necessarily agree, however, with her subsequent conclusions.

Table 3

Proportion of newborns with antibodies to varicella zoster at birth according to onset of maternal rash

<table>
<thead>
<tr>
<th>Onset of maternal rash before delivery (days)</th>
<th>Propotion of babies with detectable antibody*</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 2</td>
<td>1060</td>
</tr>
<tr>
<td>3–5</td>
<td>3156</td>
</tr>
<tr>
<td>6–7</td>
<td>4/9</td>
</tr>
<tr>
<td>8–14</td>
<td>56/6</td>
</tr>
<tr>
<td>>14</td>
<td>38/38</td>
</tr>
</tbody>
</table>

*1 arbitrary unit detected by enzyme linked immunosorbent assay.

Echocardiographic assessment of cardiac function in shocked very low birthweight infants

EDITORS,—In their excellent article Gill and Weindling state that neonatal serum electrolyte values are not routinely measured immediately after birth because they, "invariably reflect maternal levels." While this statement may be true, and is a frequent excuse for not determining newborn serum electrolyte concentrations early on, obstetricians rarely provide appropriate maternal results. Neonatologists suffer from this lack of neonatal information and are frequently surprised at serum electrolyte values eight or 12 hours after birth. Electrolyte concentrations hold considerable interest for caretakers of sick newborns. Either the obstetricians or the neonatologists should measure the baby’s concentration shortly after birth. To wait eight or 12 hours because early values reflect maternal levels, yet not to know maternal or newborn levels, is a cop out.

For Gill and Weindling not to have presented such information clearly tarnishes an otherwise excellent, informative report.

JOHN W SCANLON
Columbia Hospital for Women, 2425 L Street, Washington, DC 20007, USA

Dr Gill and Weindling comment:
Unfortunately Dr Scanlon has failed to quote exactly as written in the paper regarding serum electrolyte values in the first few hours after birth. In our discussion we stated ‘Serum calcium and potassium concentrations were not routinely measured in the first few hours after birth as they invariably reflect maternal levels. Subsequent measurements of calcium and potassium after 12 hours of age did not show any difference between the groups.’ Therefore the author’s statement that there were no differences in calcium and potassium after 24 hours is incorrect. The serum electrolytes were likely to be abnormal at the time of the echocardiogram. To our knowledge, we have not seen any research evidence to suggest that electrolytes should be measured routinely in the first few hours after birth in all preterm infants.

Changes in cerebral artery blood flow velocity after intermittent cerebrospinal fluid drainage

EDITORS,—We agree with the findings of Kempley and Gamsu1 but dispute their suggestion that these may be used to time cerebrospinal fluid (CSF) drainage in posthaemorrhagic hydrocephalus (PHH).

In a similar study of PHH and ventricular dilatation, we found no reduction in cerebral pulsatility index and increase in mean flow velocity after CSF taps, but because of the very wide range of normal values, we were unable to come up with a ‘acceptable line’ to indicate the need for intervention.2 In addition, a number of factors unrelated to intracerebral haemodynamics (such as hypercapnia or the presence of a patent ductus arteriosis) may influence the measurement of the cerebral blood flow velocity in the ill newborn with PHH. This is not the case in older children with hydrocephalus in which a clear clinical role for Doppler ultrasound exists.3

We believe that the changes observed by Kempley and Gamsu are acute changes and are of interest in so far as they may reflect the process of autoregulation but that they are unlikely to guide the timing of intervention. Furthermore, it is possible, in the absence of accurate measurements, that the ionisation, that the flow velocity changes merely reflect a change in vessel distortion with CSF taps rather than a true change in flow velocity.

Intervention should continue to be guided by the rate of head growth and symptoms of raised intracranial pressure4 rather than changes in Doppler parameters.

MICHAEL W QUINN
Department of Child Health, University of Exeter, Postgraduate Medical School, Church Lane, Heavitree, Exeter EX2 5SS

MALCOLM I LEVENE
Department of Child Health, University of Leeds, Leeds General Infirmary, Leeds LS2 9NS

Table 4

<table>
<thead>
<tr>
<th>Onset of ventricular dilatation (days)</th>
<th>Cerebrospinal fluid drainage (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 20</td>
<td>17</td>
</tr>
<tr>
<td>15–19</td>
<td>15</td>
</tr>
<tr>
<td>8–14</td>
<td>5</td>
</tr>
<tr>
<td>>14</td>
<td>3</td>
</tr>
</tbody>
</table>

Dr Kempley and Dr Gamsu comment:
Dr Quinn and Professor Levene suggest that the changes in blood flow velocity (BFV) we observed after intermittent CSF drainage may be due to alterations in the angle of insonation from changes in vessel distortion. This is not the case, as in all measurements we visualised the artery and corrected for the angle of insonation.

We agree that at present, intervention in posthaemorrhagic hydrocephalus should be guided by the rate of head growth and by symptoms and signs of raised intracranial pressure. However, both of our studies demonstrated considerable variations in cerebral artery BFV with this form of management.1,2 Compromise of the cerebral circulation by raised intracranial pressure in combination with other circulatory factors, could cause further cerebral damage in some infants.

The lack of a consistent reduction in cerebral artery BFV in the face of the onset of ventricular dilatation (ventricular index >2 SD from the mean) may have been because intracranial pressure was not increased at this early stage of ventricular dilatation.

Neither study found a significant correlation between CSF pressure and BFV, perhaps because an infant’s ability to maintain cerebral blood flow in the face of increased intracranial pressure depends on a number of factors, such as arterial blood pressure or the presence of a patent ductus arteriosus.

Before dismissing Doppler ultrasound as a tool which could aid decision making in

Archives of Disease in Childhood 1994; 70: F158

Dr Kempley and Dr Gamsu comment:
Dr Quinn and Professor Levene suggest that the changes in blood flow velocity (BFV) we observed after intermittent CSF drainage may be due to alterations in the angle of insonation from changes in vessel distortion. This is not the case, as in all measurements we visualised the artery and corrected for the angle of insonation.

We agree that at present, intervention in posthaemorrhagic hydrocephalus should be guided by the rate of head growth and by symptoms and signs of raised intracranial pressure. However, both of our studies demonstrated considerable variations in cerebral artery BFV with this form of management.1,2 Compromise of the cerebral circulation by raised intracranial pressure in combination with other circulatory factors, could cause further cerebral damage in some infants.

The lack of a consistent reduction in cerebral artery BFV in the face of the onset of ventricular dilatation (ventricular index >2 SD from the mean) may have been because intracranial pressure was not increased at this early stage of ventricular dilatation.

Neither study found a significant correlation between CSF pressure and BFV, perhaps because an infant’s ability to maintain cerebral blood flow in the face of increased intracranial pressure depends on a number of factors, such as arterial blood pressure or the presence of a patent ductus arteriosus.

Before dismissing Doppler ultrasound as a tool which could aid decision making in
posthaemorrhagic hydrocephalus, we should ask whether the aim of treatment is to maintain CSF pressure within the normal range, regardless of other circulatory factors, or whether the maintenance of cerebral perfusion is more important.

The wide normal range of cerebral artery BFV does mean that a single 'action line' is not appropriate for all infants. Study of longitudinal changes in individual infants may be a more fruitful approach which requires further investigation.

Maternal carboxyhaemoglobinemia

EDITOR,—We wish to report a case of maternal carboxyhaemoglobinemia which resulted in evidence of fetal compromise and delivered a postmature section. We believe the case highlights both a lack of management guidelines and adequate facilities for treating this serious condition in pregnancy.

Case report

A 21 year old, non-smoking primigavida at 39 weeks’ gestation accidentally inhaled carbon monoxide from a faulty gas heater for approximately two hours. On arrival at accident and emergency, three hours later, she had a headache, felt drowsy, and had reduced fetal movements (blood pressure 155/75, pulse 100/min). She had been transferred in oxygen and had normal arterial blood gases (pH 7.43, carbon dioxide tension 4.27 kPa, oxygen tension 14.7 kPa, base excess -2.2 mmol/l) but the carboxyhaemooglobin percentage was raised at 13%. Fetal heart monitoring revealed fetal tachycardia, diminished movements and decreased fetal movements. Emergency caesarean section was performed and 10 minutes after delivery a maternal carboxyhaemoglobin estimation was 3%.

The girl, with a birth weight of 3590 g, had normal Apgar scores but the carboxyhaemoglobin level in cord blood was 16.2%. After delivery no neurological compromise was noted and blood gases remained satisfactory in air. Mother and child were subsequently discharged at 5 days and no problems were noted at follow up.

Faulty gas heaters remain a major reason for 1000 deaths annually from carbon monoxide poisoning.1 Stillbirths have been recorded at relatively low maternal levels of carboxyhaemoglobin because fetal carbon monoxide concentrations can exceed maternal concentrations at equilibrium and also, there is an additional shift of the fetal haemoglobin dissociation curve to the left.2 In this case we encountered a pregnant patient with mild to moderate carboxyhaemoglobinemia who was symptomatic with evidence of fetal distress. Some authorities, particularly in the US, would advocate hyperbaric oxygen (HBO) in this situation,3 which might avoid the high anaesthetic risk in caesarean section. It would also reduce the considerable risk of delivering a neonate requiring intensive monitoring which might, if preterm, have in addition respiratory distress syndrome.

Our inquiries indicate that just 10 main-

Ureaplasma and mycoplasma central nervous system infections in neonates

EDITOR,—Waite et al describe two studies in Birmingham, Alabama in which Mycoplasma hominis and Ureaplasma urealyticum were isolated from the cerebrospinal fluid (CSF) of neonates.1 2 In the first study of 100 predominantly preterm babies, U urealyticum and M hominis were isolated from the CSF of eight and five of the neonates respectively.1 The mothers were generally of low socioeconomic status and few had received antenatal care. In their second study, of 318 predominantly full term neonates, the mothers of whom had received private obstetric care, U urealyticum and M hominis infections were isolated from nine infants.2 They suggested that culture for these organisms should be attempted on all CSF specimens from neonates with progressive hydrocephalus, CSF pleocytosis, or evidence of congenital infection.2

We prospectively studied the babies admitted to our neonatal intensive care unit over a 15 month period. We cultured 42 CSF specimens from 35 neonates for M hominis and U urealyticum, as part of the microbiological investigation of suspected sepsis or therapeutic tap for hydrocephalus. The mean gestational age was 32 weeks (range 24–41 weeks), mean birth weight 2140 g (range 700–4400 g), and mean age at first sampling was 10 days (range 8–35 days). The mothers were from varied socioeconomic backgrounds and all had received antenatal care.

No CSF specimen yielded a growth of M hominis or U urealyticum. Although our study is small, our findings are more in keeping with the report of Frys et al and 0% M hominis prevalence rates reported by Shaw et al4 in Liverpool than those quoted by Waite et al. As UK rates of maternal colonisation with these organisms are similar to elsewhere it seems that other factors must be in play producing differences in neonatal central nervous system infection rates. Further studies are probably justified. However, like Shaw et al we do not feel that CSF culture for these organisms is indicated in our population.

This study was supported by a grant from the Welsh Scheme for the Development of Health and Social Research.

L J HOVENENDEN
M CATONNS
M DRAYTON
Departments of Microbiology, Paediatric Surgery, University Hospital Wales, Heath Park, Cardiff CF4 4XN

Congenital diaphragmatic hernia: influence of associated malformations on survival

EDITOR,—In the interesting article by Sweed and Puri they made no mention of an important autosomal recessive condition that includes congenital diaphragmatic hernia.1 As in Frys’ syndrome describes infants who have severe diaphragmatic hernia associated with skeletal, palatal, and renal abnormalities.2 3

The outcome for infants with Frys’ syndrome is universally poor. Rapid identification of this syndrome in a baby born in our unit with severe diaphragmatic hernia enabled us to save the child and family the trauma of an emergency transfer to a surgical unit, so that the baby could die with peace and dignity with both parents in attendance. Urgent diagnosis was achieved through immediate access to regional colleagues in neonatology and clinical genetics. In this case, in addition to a diaphragmatic hernia, there was cleft palate, palpable polycystic right kidney, facial dysmorphic features of mid-face hypoplasia, and a small left pinna and hypoplastic nails. This recessive inherited syndrome is not uncommon.1

A similar case of congenital diaphragmatic hernia reported in the Northern region between 1985 and 1992, five (4%) had Frys’ syndrome (Edmund Hey, personal communication). Knowledge of this syndrome, therefore, with its implications for immediate care and the risks in future pregnancies is important for colleagues working with newborn babies.

P M JONES
Children’s Services, Health Centre, Escomb Road, Bishop Auckland, Co Durham DL14 6AB
Changes in cerebral artery blood flow velocity after intermittent cerebrospinal fluid drainage.
M W Quinn and M I Levene

Arch Dis Child Fetal Neonatal Ed 1994 70: F158-F159
doi: 10.1136/fn.70.2.F158-a

Updated information and services can be found at:
http://fn.bmj.com/content/70/2/F158.2.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/